Porpoises click into place

Harbour porpoises use a beam of sound, like a searchlight, to home in on their prey.

eLife
Life on Earth

--

Bats and toothed whales such as porpoises have independently evolved the same solution for hunting prey when it is hard to see. Bats hunt in the dark with little light to allow them to see the insects they chase. Porpoises hunt in murky water where different ocean environments can quickly obscure fish from view. So, both bats and porpoises evolved to emit a beam of sound and then track their prey based on the echoes of that sound bouncing off the prey and other objects. This process is called echolocation.

A narrow beam of sound can help a porpoise or bat track distant prey. But as either animal closes in on its prey such a narrow sound beam can be a disadvantage because prey can easily escape to one side. Scientists recently found that bats can widen their sound beam as they close in on prey by changing the frequency — or pitch — of the signal they emit or by adjusting how they open their mouth.

Porpoises, by contrast, create their echolocation clicks by forcing air through a structure in their blowhole called the phonic lips. The sound is transmitted through a fatty structure on the front of their head known as the melon, which gives these animals their characteristic round-headed look, before being transmitted into the sea. Porpoises would also likely benefit from widening their echolocation beam as they approach prey, but it was not clear if and how they could do this.

Danuta Wisniewska and colleagues used 48 tightly spaced underwater microphones to record the clicks emitted by three captive porpoises as they approached a target or a fish. This revealed that in the last stage of their approach, the porpoises could triple the area their sound beam covered, giving them a ‘wide angle view’ as they closed in. This widening of the sound beam occurred during a very rapid series of echolocation signals called a buzz, which porpoises and bats perform at the end of a pursuit. Unlike bats, porpoises are able to continue to change the width of their sound beam throughout the buzz.

Wisniewska and colleagues also present a video that shows that the shape of the porpoise’s melon changes rapidly during a buzz, which may explain the widening beam. Furthermore, images obtained using a technique called magnetic resonance imaging (MRI) revealed that a porpoise has a network of facial muscles that are capable of producing these beam-widening melon distortions.

As both bats and porpoises have evolved the capability to adjust the width of their sound beam, this ability is likely to be crucial for hunting effectively using echolocation.

To find out more

Listen to Danuta Wisniewska talk about how porpoises use a sophisticated sonar system in episode 20 of the eLife Podcast

Read the eLife research paper on which this eLife Digest is based: “Range-dependent flexibility in the acoustic field of view of echolocating porpoises (Phocoena phocoena)” (March 20, 2015).

Read a commentary on this research paper: “Echolocation: Clicking for supper”.

eLife is an open-access journal that publishes outstanding research in the life sciences and biomedicine.

The main text on this page was reused (with modification) under the terms of a Creative Commons Attribution 4.0 International License. The original “eLife digest” can be found in the linked eLife research paper.

--

--

eLife
Life on Earth

Cutting jargon and putting research in context