Image credit: Robert V Ruggiero (CC0)

Cross-channel communication through PARIS

A new, optically-controlled sensor system helps to monitor cell communication through gap junctions.

eLife
2 min readMar 27, 2019

--

For the tissues and organs of our bodies to work properly, the cells within them need to communicate with each other. One important part of cellular communication is the movement of signals — usually small molecules or ions — directly from one cell to another. This happens via structures called gap junctions, a type of sealed ‘channel’ that connects two cells.

Gap junctions are found throughout the body, but investigating their precise roles in health and disease has been difficult. This is due to problems with the tools available to detect and monitor gap junctions. Some are simply harmful to cells, while others cannot be restricted to specific cell populations within a tissue. This lack of specificity makes it difficult to study gap junctions in the brain, where it is important to understand the connectivity patterns between distinct types of nerve cells. Wu et al. wanted to develop a new, non-harmful method to track gap junctions in distinct groups of cells within living tissues.

To do this, Wu et al. devised PARIS, a two-part, genetically encoded system. The first part comprises a light-sensitive molecular ‘pump’, which can only be turned on by shining a laser onto the cell of interest. When the pump is active, it transports hydrogen ions out of the cell. The second part of the system is a fluorescent sensor, present inside ‘receiving’ cells, which responds to the outcoming hydrogen ions (small enough to pass through gap junctions). If an illuminated ‘signaling’ cell is connected via gap junctions to cells containing the fluorescent sensor, they will light up within seconds, but other cells not connected through gap junctions will not.

The researchers first tested PARIS in cultured human and rat cells that had been genetically engineered to produce both components of the system. The experiments confirmed that PARIS could both detect networks of gap junctions in healthy cells and reveal when these networks had been disrupted, for instance by drugs or genetic mutations. Experiments using fruit flies demonstrated that PARIS was stable in living tissue and could also map the gap junctions connecting specific groups of nerve cells.

PARIS is a valuable addition to the toolbox available to study cell communication. In the future, it could help increase our understanding of diseases characterized by defective gap junctions, such as seizures, cardiac irregularities, and even some cancers.

--

--