“God sees everything – the neighbors see more”. Image: UliDolbarge (CC BY-SA 4.0)

Neighborhood watch

Roundworms modify the chemical signals they produce to tell others whether they’re in a good or bad environment.

eLife
2 min readJul 6, 2018

--

Small roundworms such as Caenorhabditis elegans release chemical signals called ascarosides in order to communicate with other worms of the same species. Using the ascarosides, the worm can tell its friends, for example, how crowded the neighborhood is and whether there is enough food. The ascarosides thus help the worms in the population decide whether the neighborhood is good — meaning they should hang around, eat, and make babies — or whether the neighborhood is bad. If so, the worms should develop into a larval stage specialized for dispersal that will allow them to find a better neighborhood.

Roundworms make the ascarosides by attaching a long chemical ‘side chain’ to an ascarylose sugar. Further chemical modifications allow the worms to produce different signals. In general, to signal a good neighborhood, worms attach a structure called an indole group to the ascarosides. To signal a bad neighborhood, worms make the side chain very short. But how does a worm control which ascarosides it makes?

Zhou, Wang et al. now show that C. elegans can change the meaning of its chemical message by modifying the ascarosides that it has already produced instead of making new ones from scratch. Specifically, as their neighborhood runs out of food, C. elegans can use an enzyme called ACS-7 to initiate the shortening of the side chains of indole-ascarosides. The worm can thus change a favorable ascaroside signal that causes the worms to group together into an unfavorable ascaroside signal that causes the worms to enter their dispersal stage.

Although Zhou, Wang et al. have focused on chemical communication in C. elegans, the findings could easily apply to the many other species of roundworm that produce ascarosides. Knowing how worms communicate will help us to understand how worms respond to their environment. This knowledge could potentially be used to interfere with the lifecycles and survival of parasitic worm species that harm health and crops.

To find out more

Read the eLife research paper on which this eLife digest is based:

eLife is an open-access journal that publishes outstanding research in the life sciences and biomedicine.
This text was reused under the terms of a Creative Commons Attribution 4.0 International License.

--

--