Machine Learning Success: Seven Lessons for CEOs

Robbie Allen
Nov 19, 2019 · 6 min read

I recently gave a talk at the North Carolina CEO Forum. It was a great event attended by over 400 CEOs and executives. Given the audience, I focused my talk on seven key lessons for executives we’ve learned at Infinia ML over the past two years as we’ve implemented a few dozen machine learning projects.

After any talk, I usually get a handful of people that come up to me to ask how can they catch up. I can see the fear in their eyes. They read every day about some new breakthrough or an announcement that one of their competitors is doing something with machine learning. I do my best to ease their concerns because we are still at the beginning of the beginning. In 2019, the vast majority of machine learning projects are not fully deployed, production-level implementations. Often they are experiments. In many cases, these projects may show good results, but there are impediments with getting the project into production.

The press has overstated the adoption of machine learning so far. If you are getting started now, you are not really behind. But that won’t last. Things will evolve quickly and yesterday's experiments will turn into real applications in the near future. To borrow an ancient Chinese proverb, the best time to start a machine learning project was five years ago. The second best time is now.

CEOs like to create strategies. You create a high-level strategy and then turn your team loose on figuring out the details. You might think that with machine learning, you need an overarching strategy that defines the purpose, techniques, and goals of what you want to accomplish. But that would be WRONG thing to do.

Before you can do anything with machine learning, you need data. Machine learning needs data and a lot of it. Unfortunately, getting access to data and building a repeatable pipeline around that data tends to be the “long pole in the tent” for most machine learning projects. You will save yourself a lot of time and money if you have a tight data strategy before you start thinking about machine learning.

For more on this topic, see Assessing Your Data Readiness for Machine Learning.

When we started Infinia ML back in 2017, we hoped machine learning model development would be 75% or more of the work required to solve a project. Turns out that while ML is the secret sauce to the project, it may only be 25–30% of the work. Wrangling data, creating pipelines, putting the solution in production, and integrating with other systems takes a tremendous amount of effort.

Moral of the story: machine learning doesn’t limit or reduce all the other aspects of an automation project. In many ways, due to its dependency on high-quality data, it means the non-ML parts of a project are even more important.

You’ve spent all this time and resources developing a machine learning model, and now you are ready to go live. Time to sit back and enjoy the results, right? Nope. In fact, you are just getting started with ML when you get a project into production. There are a whole host of issues that reveal themselves only once you get to production. For example, does the production data resemble the data you trained on during development? If not, you might get results you don’t expect. Are you able to even measure how well your ML model is performing in production? How do you know that it is performing well or not? How do you update the model moving forward?

When you are deploying your first ML project to production, you should consider thinking about the production step as part of the development process, not the end of it.

CEOs always have questions about hiring. Here is one that we learned by hiring 20 data scientists in a couple of years: centralize your data science function. While Infinia ML is a relatively small company, I’d be willing to bet we have one of the largest data science teams in our area because we keep them in one team. We’ve had over 1,000 applicants to our data scientist position in one year and having this central team is a big reason for the interest.

Many companies decentralize their data scientists like they do their software engineers. The problem with that is that data science is still a developing field. There are very few well-accepted, broadly-applied data science practices. A data scientist in one company generally looks different and does different things than a data scientist in another company. That’s unlike software engineering which has been refined over many years. You can decentralize your engineers and be ok. Data scientists, on the other hand, need to work with other smart data scientists they can learn from. If you have a centralized data science team, you will be much more likely to attract data scientists instead of trying to hire a single data scientist in a department.

I get asked frequently about the impact of machine learning on the workforce. I’ve not been part of the doom-and-gloom crowd that predicts massive unemployment due to ML. I’ve been doing interviews with journalists since my first company, Automated Insights, started automating aspects of what journalists do back in 2009. The interesting point is that over the past 10 years and over a hundred implementations I’ve been involved in, I’ve not seen anyone lose their job. I’m not going to say there will be zero impact on the workforce, but I can say from my experience I haven’t seen widespread impact, and it also hasn’t shown up in the unemployment rate, which has continued to go down over that period.

There will be volatility in the workforce. Absolutely. But there always has been volatility in the workforce and that won’t stop. I don’t foresee widespread unemployment because of automation at a greater level than what we’ve seen over the past 20 years.

Some of my message may seem a little negative on machine learning. That’s not my intent. I’m just trying to paint a realistic picture relative to some of the hype that you’ve undoubtedly read about. Ultimately, I still believe ML will be a long-term winner. It will be a pivotal part of most software solutions in the future — it just won’t be the only element of the solution. ML will be an enabling technology much like databases are today.


Robbie Allen is a Senior Advisor to Infinia ML, a team of data scientists, engineers, and business experts putting machine learning to work.

Robbie Allen

Written by

Now: Co-Founder Startomatic.com Previously: Co-Founder InfiniaML.com, Founder AutomatedInsights.com

Machine Learning in Practice

Practical insights for executives, managers, and project managers eager to deploy machine learning inside their company.

Welcome to a place where words matter. On Medium, smart voices and original ideas take center stage - with no ads in sight. Watch
Follow all the topics you care about, and we’ll deliver the best stories for you to your homepage and inbox. Explore
Get unlimited access to the best stories on Medium — and support writers while you’re at it. Just $5/month. Upgrade