Are Analytics Truly Self-service?

Sure, it’s much easier for analytical amateurs to create professional-level results today. But there are limits to the self-service movement, too.

Aug 23, 2017 · 6 min read

By Thomas H. Davenport

I’ve been thinking about some of the changes over the last decade in analytics, coinciding with the revised and updated release of my book with Jeanne Harris, Competing on Analytics. The book is ten years old, and much has changed in the world of analytics in the meantime. In updating the book (and in a previous blog post about the updates), we focused on such changes as big data, machine learning, streaming analytics, embedded analytics, and so forth. But some commenters have pointed out that one change that’s just as important is the move to self-service analytics. We described this trend in our book (due in early September), but we may not have given it the focus it deserves.

There should be no doubt that analytics of virtually every type are becoming more of a self-service activity. There is also little doubt that at one point they were an activity requiring analytical professionals. Today and for the last several decades, however, analytics are becoming easier to use. It’s easier to perform most key tasks in the analytical process, such as:

  • To acquire, integrate, review and clean data;
  • To run descriptive and predictive analytics on the data;
  • To find the model that best fits your data;
  • To display descriptive analytics in an appealing visual format;
  • To interpret results.

Self-service Drivers

Why have things gotten easier for analytics users?

There is no single breakthrough, but rather a series of incremental improvements.

Running descriptive analytics has gotten easier, both in terms of creating the analyses and displaying them visually. So-called OLAP systems, which involved manipulating pre-structured data cubes, were relatively easy to use once the cube had been constructed, but that typically needed to be done by IT professionals. And users often realized that the data they wanted to analyze wasn’t in their cube, so they needed a new one to be constructed.

Newer tools not only have a better interface, but eschew the cube idea to enable work on an entire dataset. This eliminates or at least reduces the need for IT professional help with analytics. In addition, most analyses with contemporary tools take place entirely in memory, which speeds analysis dramatically and makes it possible to iterate frequently until the best results are achieved.

Finding the model that best fits your data — a problem in predictive and prescriptive analytics — sometimes requires machine learning, but doesn’t always. Some more traditional statistical analysis systems can now make recommendations about what kinds of analyses to perform as well. These systems can examine the data and model roles (independent and dependent, for example) for the selected variables, and specify, for example, that a bivariate correlation is the best analysis for the data 1.

For the most automated (or at least semi-automated) approach, machine learning systems can try out more than a hundred different algorithms on thousands or millions of possible variable combinations and transformations. Some machine learning systems simply ask for a dataset and the variable to be predicted, and the system does the rest. They will even point out likely outliers and errors in data, and exclude them from the analysis automatically if you want. Of course, there is a downside to this ease of analysis; it may be difficult to understand and interpret the results. Hypothesis-driven analyses tend to be much more interpretable.

Finally, analytical tasks related to displaying and interpreting results have gotten substantially easier for amateurs to perform. Visual analytics displays can be created easily and quickly. Some vendors even recommend particular visual display types for particular types of data, e.g., a line chart for time-series data.

Interpretation of analytical results is eased not only by visuals, but also by automatically-generated textual narratives. More than one vendor of “natural language generation” software can create a paragraph or so of interpretive text about a particular bit of descriptive analytics. It is early days for this technology, but some viewers and decision-makers may find text easier to interpret than bar and line charts.

Limitations and Errors

All of these technological advancements have made it much easier for analytical amateurs to create professional-level results. This is mostly a good thing. However, there are some limits to the self-service movement, at least at the present time.

As with spreadsheets (perhaps the first self-service analytics technology), amateur analysts can still get in trouble in several different ways.

Beyond simply avoiding errors, there are several aspects of analytics that still require some expertise. This is despite increasing levels of analytical ease and automation. Decisions on such questions as how to frame the overall analysis, what dataset to use, how best to handle missing data, and if more or better data are needed still require human judgment. In addition, many statistical modeling approaches make certain assumptions about the data, and it’s important to ensure that they are not being violated. As a result of these remaining needs for expertise, amateurs may still need at least to consult with analytical professionals as they go about their work.

Photo by Dorothy Joseph

The Great Middle Ground

The press and some vendors tend to discuss analytical expertise as binary — rank amateurs vs. experienced professional analysts, or Ph.D. data scientists vs. “citizen data scientists.” You probably already realize that the world is a little more complex than that. Neither all amateurs nor all professionals are created equal. There is a continuum of expertise about almost every phase of analytics. Some “amateurs” may not know when to employ logistic regression, but may be quite wise about how to frame an decision and how to communicate the results of analyses in a way that inspires trust and action. And the most sophisticated statistician or data scientist may be lacking in some of those same attributes.

If your organization is trying to increase the number of people who work with data and make decisions on the basis of analytics, don’t succumb to simplistic binary distinctions. Instead, figure out the skills that are needed to succeed with analytics. Create a set of roles — “business analyst,” “quantitative analyst,” “data scientist,” and the like — and specify what level of the needed skills each role should have. You won’t be able to capture all of the complexity of skill/role combinations, but at least model some of it. Then start thinking about certifying people in the various roles.

And by all means, take advantage of the easier-to-use technologies that are making it easier for people to perform their own analyses. You may want to classify different technologies as well in terms of how well suited they are for each role. And make sure that you revise your classification often, because this technology changes really quickly.

Tom Davenport is the President’s Distinguished Professor of Information Technology and Management at Babson College, the co-founder of the International Institute for Analytics, a Fellow of the MIT Initiative on the Digital Economy, and a Senior Advisor to Deloitte Analytics.

Originally published at

MIT Initiative on the Digital Economy

The IDE explores how people and businesses work, interact…

MIT Initiative on the Digital Economy

The IDE explores how people and businesses work, interact, and prosper in an era of profound digital transformation. We are leading the discussion on the digital economy.


Written by


Addressing one of the most critical issues of our time: the impact of digital technology on businesses, the economy, and society.

MIT Initiative on the Digital Economy

The IDE explores how people and businesses work, interact, and prosper in an era of profound digital transformation. We are leading the discussion on the digital economy.

Medium is an open platform where 170 million readers come to find insightful and dynamic thinking. Here, expert and undiscovered voices alike dive into the heart of any topic and bring new ideas to the surface. Learn more

Follow the writers, publications, and topics that matter to you, and you’ll see them on your homepage and in your inbox. Explore

If you have a story to tell, knowledge to share, or a perspective to offer — welcome home. It’s easy and free to post your thinking on any topic. Write on Medium

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store