You may never own a quantum computer, but IBM will still let you use one

crpt Lattice
4 min readMay 7, 2018

--

You’ll probably never use quantum hardware yourself, but there’s a high chance you’ll benefit from research that couldn’t have been completed without it. The ones and zeros of conventional computers could never accomplish the kind of processing quantum computing is capable of.

The possibilities are limitless, yet there’s one important hurdle: If people don’t actually have access to quantum computers, the technology is little more than an intriguing science project. If computer scientists, academic researchers, and others don’t have access to the hardware, the field will never take its next step forward.

IBM’s answer to this problem is a cloud platform called IBM Q. Since the program launched in May 2016, it’s given users a way to utilize quantum computation without having direct access to a quantum computer.

The hardware itself might not be plentiful — but thanks to IBM Q, it’s ubiquitous.

Quantum Build

I met Bob Sutor, the vice president for IBM Q strategy and ecosystem on a crowded show floor at the IBM Think conference in April. We stood inches away from a cryostat, part of the complex architecture that makes quantum computation possible.

“The actual quantum device, the qubits, live in [a cryostat]. This is kept at very close to absolute zero. 0.015 kelvin. That’s a tiny bit above absolute zero, where nothing moves.”

“The actual quantum device, the qubits, live in here,” Sutor told me, pointing to a small compartment at the base of the structure. “This is kept at very close to absolute zero. 0.015 kelvin. That’s a tiny bit above absolute zero, where nothing moves.”

Refrigeration is a common factor among many of the quantum computing projects from the past decade. Low temperatures make it easy to maintain an environment where entanglement can take place. It’s one of the greatest challenges that scientists and engineers working in this field face: how can we make the surrounding area cold enough for the hardware to function as intended.

While the coldest section of the cryostat almost reaches absolute zero, the top of the structure is a relatively balmy four degrees kelvin. Each section gets progressively colder from top to bottom, a process that apparently takes a total of 36 hours. Sutor refers to it as a “glorified still,” referring to the way that helium is used to carry out a distillation process that flushes out heat.

Dummy Hardware

As Sutor talks to me about this complex hardware, he acknowledges that this particular example isn’t actually used to run calculations as part of the IBM Q platform.

He tells me that the qubits are fake — “why put one of our state of the art chips in something that just wanders around?” — and that the cryostat itself is a little more “robust” than the real McCoy, to ensure that it doesn’t fall to pieces during its press tour.

“Why put one of our state of the art chips in something that just wanders around?”

We’ve been covering quantum computing for Digital Trends for years, and it was still fascinating to see the hardware ‘in the flesh,’ even if it was actually just a replica. But the fact that IBM feels the need to lug around a physical representation of its quantum endeavors speaks volumes about the current status of this technology.

For years, quantum computing was little more than a ‘what-if?’ that fascinated computer scientists. Then it was an experiment. Now it occupies a strange no man’s land, offering direct utility for researchers even before the promise of a large-scale universal quantum computer has been fulfilled. That said, it’s still a relatively niche technology, even though IBM is doing its utmost to make it accessible.

The field of quantum computing is evolving at a remarkable rate, but there’s still a long way to go before it reaches its potential. Part of the challenge is the sheer scope of bringing these ideas to fruition.

The concept itself required a significant amount of grounding in experimental physics just to get off the ground. That work needed to be upheld by feats of engineering — for instance, the coiled wires you see in the images illustrating this article were implemented to prevent the hardware from breaking itself into pieces as the temperatures drop and the metal contracts. Currently, there’s the daunting task of developing an ecosystem around the technology.

It took a company with the heft of IBM to turn something that could easily have ended up as a science project into technology that’s workable and practical. But now that a great deal of foundational work has already been completed, there’s a distinct focus on how the make this hardware accessible, alongside efforts to keep on making incremental improvements.

--

--