GT/ Boosting energy generation from microalgae

Paradigm
Paradigm
Published in
37 min readOct 23, 2021

Energy & green technology biweekly vol.10, 9th October — 23d October

TL;DR

  • The variety of humble algae that cover the surface of ponds and seas could hold the key to boosting the efficiency of artificial photosynthesis, allowing scientists to produce more energy and lower waste in the process. A study showed how encasing algae protein in liquid droplets can dramatically enhance the algae’s light-harvesting and energy-conversion properties by up to three times. This energy is produced as the algae undergoes photosynthesis, which is the process used by plants, algae and certain bacteria to harness energy from sunlight and turn it into chemical energy.
  • Scientists have developed a fully operational standalone solar-powered mini-reactor that offers the potential for the production of fine chemicals in remote locations on Earth, and possibly even on Mars.
  • After analyzing the growth rates of wind and solar power in 60 countries, researchers conclude that virtually no country is moving sufficiently fast to avoid global warming of 1.5°C or even 2°C.
  • Scientists have developed a new technique that allows researchers to synthesize a perovskite solar material, characterize its crystal structure, and test its response to light at the same time.
  • Replacing petroleum-based aviation fuel with sustainable aviation fuel derived from a type of mustard plant can reduce carbon emissions by up to 68%, according to new research.
  • Wind farms can be made more efficient. Researchers now examine diurnal and seasonal patterns of wind speeds and their impact on the adequacy of energy production. The results helped them develop a seasonal adequacy assessment procedure.
  • Hydropower is the dominant source of energy in the Amazon region, the world’s largest river basin and a hotspot for future hydropower development. However, a new study warns that in the coming decades, climate change-driven reductions in precipitation and river discharge will diminish the Amazon’s hydropower capacity.
  • The value of UK agriculture could be boosted by millions of pounds a year if thousands of honeybee hives were deployed on solar parks across the country, a new study reveals. However, scientists caution that the benefits of managing solar parks for wild pollinators over honeybees should be prioritized where appropriate and should be assessed on a site-by-site basis.
  • Scientists have explored different approaches to catalysis, a chemical process that plays an essential role in biological reactions, as well as many industrial applications. They may also advance the development of green energy solutions to address the climate crisis.
  • How much will solar power really cost in China in the coming decades? Researchers have found that solar energy could provide 43.2% of China’s electricity demands in 2060 at less than two-and-a-half U.S. cents per kilowatt-hour.
  • And more!

Green Technology Market

Green technology is an applicable combination of advanced tools and solutions to conserve natural resources and environment, minimize or mitigate negative impacts from human activities on the environment, and ensure sustainability development. Green technology is also referred to as clean technology or environmental technology which includes technologies, such as IoT, AI, analytics, blockchain, digital twin, security, and cloud, which collect, integrate, and analyze data from various real-time data sources, such as sensors, cameras, and Global Positioning System (GPS).

Green technology, also known as sustainable technology, protects the environment by using various forms of sustainable energy. Some of the best examples of green technologies include solar panels, LED lighting, wind energy, electric vehicles, vertical farming, and composting.

The global Green Technology and Sustainability market size to grow from USD 11.2 billion in 2020 to USD 36.6 billion by 2025, at a Compound Annual Growth Rate (CAGR) of 26.6% during the forecast period. The growing consumer and industrial interest for the use of clean energy resources to conserve environment and increasing use of Radio Frequency Identification sensors across industries are driving the adoption of green technology and sustainability solutions and services in the market.

The blockchain segment is estimated to grow at the highest CAGR: Energy-intensive cryptocurrency mining has caused a spike in carbon emission, and hence blockchain is capable of driving innovation in the field of green technology.

Latest News

Latest Research

Light-Harvesting in Biophotonic Optofluidic Microcavities via Whispering-Gallery Modes

by Zhiyi Yuan, Xin Cheng, Tsungyu Li, Yunke Zhou, Yifan Zhang, Xuerui Gong, Guo-En Chang, Muhammad D. Birowosuto, Cuong Dang, Yu-Cheng Chen in ACS Applied Materials & Interfaces

The variety of humble algae that cover the surface of ponds and seas could hold the key to boosting the efficiency of artificial photosynthesis, allowing scientists to produce more energy and lower waste in the process.

A study by Nanyang Technological University, Singapore (NTU Singapore) scientists showed how encasing algae protein in liquid droplets can dramatically enhance the algae’s light-harvesting and energy-conversion properties by up to three times. This energy is produced as the algae undergoes photosynthesis, which is the process used by plants, algae and certain bacteria to harness energy from sunlight and turn it into chemical energy.

The original fluorescence spectra of Fig. 1d: (a) 0.99 mW/cm2. (b) 54.33 mW/cm2.

By mimicking how plants convert sunlight into energy, artificial photosynthesis may be a sustainable way of generating electricity that does not rely on fossil fuels or natural gas, which are non-renewable. As the natural energy conversion rate from sunlight to electricity is low, boosting the overall electricity produced could make artificial photosynthesis commercially viable.

The study, led by Assistant Professor Chen Yu-Cheng from the School of Electrical and Electronic Engineering, looked at a particular type of protein found in red algae. These proteins, called phycobiliproteins, are responsible for absorbing light within algae cells to kick-start photosynthesis.

Phycobiliproteins harvest light energy from across the spectral range of light wavelengths, including those which chlorophylls absorb poorly, and convert it to electricity.

Asst Prof Chen said: “Due to their unique light-emitting and photosynthetic properties, phycobiliproteins have promising potential applications in biotechnology and solid-state devices. Boosting the energy from the light-harvesting apparatus has been at the centre of development efforts for organic devices that use light as a power source.”

The team’s research may lead towards a new, sustainable way of generating electricity from sunlight that does not rely on fossil fuels or natural gas, which are non-renewable. New bio-inspired technology based on phycobiliproteins could be used to make more efficient solar cells and paves the way for greater efficiency within artificial photosynthesis.

(a) Schematic diagram of dye concentration in the bulk solution with or without the LC microdroplets. (b) The modulated fluorescence spectra of C-phycocyanin (CPC) based on a single-microdroplet and bulk solution.

Using algae as a source of biological energy is a popular topic of interest in sustainability and renewable energy, as algae usage potentially reduces the amount of toxic by-products created in the manufacturing of solar panels.

The study supports NTU’s commitment to sustainability as part of its 2025 strategic plan, which seeks to understand, articulate, and address humanity’s impact on the environment.

The calculation method of average Q-factor.

Microalgae absorb sunlight and convert it into energy. In order to amplify the amount of energy that algae can generate, the research team developed a method to encase red algae within small liquid crystal micro-droplets that are 20 to 40 microns in size and exposed them to light.

When light hits the droplet, an effect known as the “whispering-gallery mode” occurs, in which light waves travel around the curved edges of the droplet. Light is effectively trapped within the droplet for a longer period of time, providing more opportunities for photosynthesis to take place and hence generating more energy. The energy generated during photosynthesis in the form of free electrons can then be captured through electrodes as an electrical current.

“The droplet behaves like a resonator that confines a lot of light,” said Asst Prof Chen. “This gives the algae more exposure to light, increasing the rate of photosynthesis. A similar result can be obtained by coating the outside of the droplet with the algae protein too.”

“By exploiting microdroplets as a carrier for light-harvesting biomaterials, the strong local electric field enhancement and photon confinement inside the droplet resulted in significantly higher electricity generation,” he said.

The droplets can be easily produced in bulk at low cost, making the research team’s method widely applicable.

According to Asst Prof Chen, most algae-based solar cells produce an electrical power of 20–30 microwatts per square centimetre (µW/cm2). The NTU algae-droplet combination boosted this level of energy generation by at least two to three times, compared to the energy generation rate of the algae protein alone.

Liquid crystal molecule orientation and WGM polarization schematics in LC droplets. Both types of LC droplets present different birefringent characteristics and LC orientations. TM and TE modes represent the different orientation of electric field oscillation.

Artificial photosynthesis aims to replicate the natural biological process by which plants convert sunlight into chemical energy. The goal is to establish a way of making energy renewable, reliable, and storable without impacting the environment in a negative way.

One of the challenges of artificial photosynthesis is generating energy as efficiently as other solar-powered energy sources, such as solar panels. On average, solar panels have an efficiency rating of 15 to 20 per cent while artificial photosynthesis is currently estimated to be 4.5 per cent efficient.

Asst Prof Chen said: “Artificial photosynthesis is not as efficient as solar cells in generating electricity. However, it is more renewable and sustainable. Due to increasing interest in environmentally-friendly and renewable technologies, extracting energy from light-harvesting proteins in algae has attracted substantial interest in the field of bio-energy.”

Asst Prof Chen envisions one potential use case of “algae farms,” where densely-growing algae in bodies of water could eventually be combined with larger liquid crystal droplets to create floating power generators.

“The micro-droplets used in our experiments has the potential to be scaled up to larger droplets which can then be applied to algae outside of a laboratory environment to create energy. While some might consider algae growth to be unsightly, they play a very important role in the environment. Our findings show that there is a way to convert what some might view as ‘bio-trash’ into bio-power,” said Asst Prof Chen.

Development of an off‐grid solar‐powered autonomous chemical mini‐plant for producing fine chemicals

by Tom M. Masson, Stefan D. A. Zondag, Koen P. L. Kuijpers, Dario Cambié, Michael G. Debije, Timothy Noel in ChemSusChem

Professor Timothy Noël and co-workers in the Flow Chemistry group of the University of Amsterdam’s Van ‘t Hoff Institute for Molecular Sciences have developed a fully operational standalone solar-powered mini-reactor which offers the potential for the production of fine chemicals in remote locations on Earth, and possibly even on Mars. In a paper, the team presents their unique, fully off-grid photochemistry system.

The new system, which is capable of synthesising drugs and other chemicals in economically relevant volumes, ‘shines in isolated environments and allows for the decentralisation of the production of fine chemicals,’ according to Professor Noël.

‘The mini-plant is based on the concept of photochemistry, using sunlight to directly ‘power’ the chemical synthesis. We employ a photocatalyst, a chemical species that drives the synthesis when illuminated,’ Noël continues. ‘Normally powerful LEDs or other lighting equipment are used for the illumination, but we choose to use sunlight. For starters, this renders the synthesis fully sustainable. But it also enables stand-alone operation in remote locations. Our dream is to see our system used at a base on the Moon or on Mars, where self-sustaining systems are needed to provide energy, food and medicine. Our mini-plant could contribute to this in a fully autonomous, independent way.’

Working principle of the system. (A) Scheme of the solar mini-plant showing the main components: the LSC-PM, the external solar panel, the reactant feeds, MFC and the flow control system. (B) Oxidation of L-methionine to L-methionine sulfoxide using Methylene Blue (MB) as photocatalyst: 0.1M L-methionine, 1 mol% MB in H2O. (c) Wavelength conversion scheme LSC-PM and Methylene Blue. The absorption (red area) and emission (green area) of the LR305 dye compared to the absorption spectrum of the MB photocatalyst (blue area). Superimposed on the spectra is the AM 1.5 solar spectrum.

Development of the mini-plant started around five years ago when the Noël research group — at the time based at Eindhoven University of Technology -developed a ‘solar concentrator’. This is essentially a sheet of transparent plastic with micrometre-sized channels in which the chemical synthesis takes place. By adding dedicated dyes, the researchers developed the plastic into a solar guide and luminescent convertor. It captures sunlight and directs it towards the channels, while converting a substantial part of the light into red photons that drive the chemical conversion.

The next step was to turn the concentrator into a fully operational flow reactor. ‘This means we pump a reaction mixture of starting materials and photocatalyst through the sunlit channels,’ says Noël. ‘The desired chemical conversion takes places in these channels so that they are, in fact, our alternative to the traditional chemical synthesis flasks or vessels.’ Noël goes on to explain that even though the channels are quite tiny, such a ‘flow reactor’ can produce quite relevant outputs since it operates from sunrise to sunset in a continuous manner. ‘What’s more,’ he adds, ‘the use of channels allows for a far more effective coupling between light and chemistry than is possible when using traditional flask reactors.’

The Noël research group had already demonstrated the solar flow reactor concept by synthesising a range of medicinally relevant molecules, albeit on a laboratory scale in a controlled environment. Now, they describe how they developed a viable, optimally effective autonomous photosynthesis system and employed it in field tests. They also provide an outlook on aspects such as application potential and economic performance.

The prototype solar flow reactor now covers an area of about 0.25 square metres. To make it fully autonomous, the researchers equipped it with a solar cell that provides the power for auxiliaries such as pumps and the control system. This solar cell is placed behind the flow reactor in a stacked configuration that ensures maximum efficiency per square centimetre, according to Noël. ‘The more energetic wavelengths are used in the reactor to drive the photocatalyst. The remaining photons with wavelengths of 600–1100 nm are converted to electricity to drive the auxiliaries.’

(A) Simulation of the tilt angle impact on yearly productivity of the LSC-PM mini-plant. (B) Photographs of the sky conditions at time of the experiment. © Experimental setup.

The fully autonomous prototype also employs a responsive control system that can optimise the chemical conversion at various light intensities.

‘When a cloud covers the sun the chemical conversion would normally decrease very rapidly,’ Noël says. ‘Our system is able to make the necessary adjustments in real time. Field tests confirmed that it is able to churn out chemicals at a constant rate even on days that are a mixture of sunny and cloudy.’ The tests were carried out in the Netherlands. To get an impression of the global deployment possibilities, comparisons were made using solar data at locations in Norway (North Cape), Spain (Almeria) and Australia (Townsville). ‘Even at the North Cape, with relatively little sun power, we estimate satisfactory production figures.’

The researchers also compared the performance of the prototype system with production figures for the well-known photochemical synthesis of rose oxide. This product for the perfume industry is industrially produced by photochemical means because it is cleaner and more efficient than traditional chemical synthesis. The researchers calculated that a surprisingly small surface area would be required for their system to meet current annual demand — just 150 m2 would suffice.

Noël: ‘That’s just one factory roof full of our mini-plants! The system cost would be similar to current commercial photosynthesis systems. But we only need solar energy so there are no energy expenditures. So this really could be a sustainable strategy for future production of chemicals such as rose oxide or pharmaceuticals.’

Noël believes that his group’s research refutes any scepticism about the potential of solar-powered chemical technology: ‘We demonstrate that there are opportunities for solar-driven chemical production even here in the Netherlands. You don’t have to go to Qatar!’ What’s more, the system lends itself to application in unexpected locations. ‘You could even cover the facade of a building. Of course the output would then be smaller than when the system is placed at an optimal angle to the sun. But it certainly is possible — and how cool would it be to have the walls make chemicals!’

National growth dynamics of wind and solar power compared to the growth required for global climate targets

by Aleh Cherp, Vadim Vinichenko, Jale Tosun, Joel A. Gordon, Jessica Jewell in Nature Energy

The production of renewable energy is increasing every year. But after analysing the growth rates of wind and solar power in 60 countries, researchers at Chalmers University of Technology and Lund University in Sweden and Central European University in Vienna, Austria, conclude that virtually no country is moving sufficiently fast to avoid global warming of 1.5°C or even 2°C.

“This is the first time that the maximum growth rate in individual countries has been accurately measured, and it shows the enormous scale of the challenge of replacing traditional energy sources with renewables, as well as the need to explore diverse technologies and scenarios,” says Jessica Jewell, Associate Professor of Energy Transitions at Chalmers University of Technology.

Phases, mechanisms, models and metrics of wind and solar power adoption.

The Intergovernmental Panel on Climate Change (IPCC) has identified energy scenarios compatible with keeping global warming under 1.5°C or 2°C. Most of these scenarios envision very rapid growth of renewable electricity: on average about 1.4 per cent of total global electricity supply per year for both wind and solar power, and over 3 per cent in more ambitious solar power scenarios. But the researchers’ new findings show that achieving such rapid growth has so far only been possible for a few countries.

Measuring and predicting the growth of new technologies like renewable energy is difficult, as they do not grow linearly. Instead, the growth usually follows a so called S-curve — at first it accelerates exponentially, then stabilises to linear growth for a while, and in the end slows down as the market becomes saturated.

Wind and solar power take-off in the 60 largest electricity markets and the current generation worldwide.

“We came up with a new method: to use mathematical models to measure the slope of the S-curve, that is, the maximum growth rate achieved at its steepest point. It is an entirely novel way to look at the growth of new technologies,” says Jessica Jewell.

When analyzing the 60 largest countries the researchers found that the maximum growth rate for onshore wind power is on average 0.8 per cent of the total electricity supply per year, and 0.6 per cent on average for solar — much lower than in the IPCC scenarios. Sustained growth faster than 2 per cent per year for wind and 1.5 per cent for solar has only occurred in smaller countries such as Portugal, Ireland and Chile.

“It is likely that faster growth is easier to achieve in smaller more homogenous countries, rather than in large diverse systems,” says Jessica Jewell.

Illustration of feasibility spaces for solar and wind power deployment based on historical observations and growth models compared with the 1.5 and 2 °C pathways.

“Among larger countries, only Germany has so far been able to sustain growth of onshore wind power comparable with median climate stabilization scenarios. In other words, to stay on track for climate targets, the whole world should build wind power as fast as Germany built recently. There may be limits to how fast wind and solar can be expanded and thus we should systematically analyse the feasibility of other climate solutions, especially for fast growing Asian economies such as India and China,” says Aleh Cherp, professor of Environmental Sciences and Policy at Central European University and Lund University.

A two-phase wind speed simulation model considering diurnal and seasonal patterns and its application to adequacy assessment

by Shuwei Miao, Haoran Xiong, Dan Li, Yingzhong Gu in Journal of Renewable and Sustainable Energy

The development of wind energy, a renewable, emissions-free energy source, is widely acknowledged as an imperative to mitigate greenhouse gas emissions and the impacts of climate change. In recent years, much progress in this realm has been made as the cost of developing wind energy has declined significantly with emerging technologies and incentive policies.

Nevertheless, wind farms, generally located in areas with robust wind resources and typically consisting of multiple turbines that convert wind into clean electricity, can be made more efficient. Researchers from China and the United States examine diurnal and seasonal patterns of wind speeds and their impact on the adequacy of energy production.

“In wind farm planning, decision-makers need to select an appropriate site for wind farm installation,” said co-author Shuwei Miao, from Three Gorges University in Yichang, China. “We developed a seasonal adequacy assessment procedure using historical wind speed data, wind turbine parameters, system peak load, and other important factors that can help inform decisions on wind farm siting and operation.”

The 24-h wind speed curve of 17 May 2010, 18 May 2010, and 19 May 2010 at Cando.

Using a two-phase simulation model to simulate diurnal and seasonal wind speed variations, the researchers justify the accuracy of their results by comparing them to actual data collected from a wind site in North Dakota. The results helped them develop the seasonal adequacy assessment procedure.

“Wind speed associates with uncertainty along with the season, terrain, and climate,” said Miao. “And it also determines the energy production potential.

“If a power system contains considerable wind farm capacities, then the capability of system generation to meet system load will be heavily influenced by uncertain wind speed. This capability refers to system adequacy, and the quantitative assessment of system adequacy can be helpful to optimal wind farm planning.”

The standard deviation of actual, simulated-I and simulated-II wind speed at (a) spring, (b) summer, (c) autumn, and (d) winter during T1, …, T10 at Cando.

The first phase of the simulation model examines wind speed probability distribution during 24-hour durations. The second phase considers wind patterns on a seasonal basis. Together, they offer significant insight into the peculiar nuances of the naturally occurring energy resource and how to more efficiently capitalize on them.

“We believe our findings are valuable to wind energy development and production,” said Miao. “When historical wind speed data, wind turbine parameters, and other data for a candidate site in other regions are available, the model and procedure presented in this study can be readily applicable to simulate the wind profile and assess the seasonal system adequacy indices.”

Out-of-equilibrium processes in crystallization of organic-inorganic perovskites during spin coating

by Shambhavi Pratap, Finn Babbe, Nicola S. Barchi, Zhenghao Yuan, Tina Luong, Zach Haber, Tze-Bin Song, Jonathan L. Slack, Camelia V. Stan, Nobumichi Tamura, Carolin M. Sutter-Fella, Peter Müller-Buschbaum in Nature Communications

An exciting new solar material called organic-inorganic halide perovskites could one day help the U.S. achieve its solar ambitions and decarbonize the power grid. One thousand times thinner than silicon, perovskite solar materials can be tuned to respond to different colors of the solar spectrum simply by altering their composition mix.

Typically fabricated from organic molecules such as methylammonium and inorganic metal halides such as lead iodide, hybrid perovskite solar materials have a high tolerance for defects in their molecular structure and absorb visible light more efficiently than silicon, the solar industry’s standard.

Altogether, these qualities make perovskites promising active layers not only in photovoltaics (technologies that convert light into electricity), but also in other types of electronic devices that respond to or control light including light-emitting diodes (LEDs), detectors, and lasers.

“Although perovskites offer great potential for greatly expanding solar power, they have yet to be commercialized because their reliable synthesis and long-term stability has long challenged scientists,” said Carolin Sutter-Fella, a scientist at the Molecular Foundry, a nanoscience user facility at Lawrence Berkeley National Laboratory (Berkeley Lab). “Now, a path to perfect perovskites may soon be within reach.”

The standard deviation of actual, simulated-I and simulated-II wind speed at (a) spring, (b) summer, © autumn, and (d) winter during T1, …, T10 at Cando.

A recent study co-led by Sutter-Fella reports that solar materials manufacturing could be aided by a sophisticated new instrument that uses two types of light — invisible X-ray light and visible laser light — to probe a perovskite material’s crystal structure and optical properties as it is synthesized.

“When people make solar thin films, they typically have a dedicated synthesis lab and need to go to another lab to characterize it. With our development, you can fully synthesize and characterize a material at the same time, at the same place,” she said.

For this work, Sutter-Fella assembled an international team of top scientists and engineers to equip an X-ray beamline endstation with a laser at Berkeley Lab’s Advanced Light Source (ALS). The new instrument’s highly intense X-ray light allows researchers to probe the perovskite material’s crystal structure and unveil details about fast chemical processes. For example, it can be used to characterize what happens in the second before and after a drop of a solidifying agent transforms a liquid precursor solution into a solid thin film.

At the same time, its laser can be used to create electrons and holes (electrical charge carriers) in the perovskite thin film, allowing the scientists to observe a solar material’s response to light, whether as a finished product or during the intermediate stages of material synthesis.

“Equipping an X-ray beamline endstation with a laser empowers users to probe these complementary properties simultaneously,” explained Sutter-Fella.

This combination of simultaneous measurements could become part of an automated workflow to monitor the production of perovskites and other functional materials in real time for process and quality control.

Four phases of film formation during spin coating.

Perovskite films are typically made by spin coating, an affordable technique that doesn’t require expensive equipment or complicated chemical setups. And the case for perovskites gets even brighter when you consider how energy-intensive it is just to manufacture silicon into a solar device — silicon requires a processing temperature of about 2,732 degrees Fahrenheit. In contrast, perovskites are easily processed from solution at room temperature to just 302 degrees Fahrenheit.

The beamline endstation allows researchers to observe what happens during synthesis, and in particular during the first few seconds of spin coating, a critical time window during which the precursor solution slowly begins to solidify into a thin film.

First author Shambhavi Pratap, who specializes in the use of X-rays to study thin-film solar energy materials, played a critical role in developing the instrument as an ALS doctoral fellow. She recently completed her doctoral studies in the Müller-Buschbaum group at the Technical University of Munich.

“The instrument will allow researchers to document how small things that are usually taken for granted can have a big impact on material quality and performance,” Pratap said.

“To make reproducible and efficient solar cells at low cost, everything matters,” Sutter-Fella said. She added that the study was a team effort that spanned a wide range of scientific disciplines.

Break-even price and carbon emissions of carinata-based sustainable aviation fuel production in the Southeastern United States

by Asiful Alam, Md Farhad Hossain Masum, Puneet Dwivedi in GCB Bioenergy

Replacing petroleum-based aviation fuel with sustainable aviation fuel derived from a type of mustard plant can reduce carbon emissions by up to 68%, according to new research from University of Georgia scientist Puneet Dwivedi.

Dwivedi led a team that estimated the break-even price and life cycle carbon emissions of sustainable aviation fuel (SAF) derived from oil obtained from Brassica carinata, a non-edible oilseed crop.

“If we can secure feedstock supply and provide suitable economic incentives along the supply chain, we could potentially produce carinata-based SAF in the southern United States,” said Dwivedi, associate professor in the Warnell School of Forestry and Natural Resources. The aviation industry emits 2.5% of all carbon dioxide emissions nationwide and is responsible for 3.5% of global warming. “Carinata-based SAF could help reduce the carbon footprint of the aviation sector while creating economic opportunities and improving the flow of ecosystem services across the southern region.”

System boundary of the life cycle of carinata-based sustainable aviation fuel.

Dwivedi’s findings come at an opportune time. In September, President Joe Biden proposed a sustainable fuel tax credit as part of the Sustainable Aviation Fuel Grand Challenge, which brings federal agencies together to scale up the production of SAF nationwide. Biden set the goal of a 20% drop in aviation emissions by 2030 and achieving a fully zero-carbon aviation sector by 2050.

The proposed tax credit requires a 50% reduction in life cycle carbon emissions — a standard that carinata exceeds, according to the team’s findings. The price for producing SAF from carinata ranged from $0.12 per liter on the low end to $1.28 per liter, based on existing economic and market incentives. The price for petroleum-based aviation fuel was $0.50 per liter — higher than carinata-based SAF when current economic incentives were included in the analysis.

Break-even cost of carinata-based sustainable aviation fuel.

“Current policy mechanisms should be continued to support manufacturing and distribution of SAF. The Grand Challenge announced by President Biden could be a game-changer in supporting carinata-based SAF production in the southern region,” Dwivedi said.

“In the South, we can grow carinata as a winter crop because our winters are not as severe compared to other regions of the country,” he said. “Since carinata is grown in the ‘off’ season it does not compete with other food crops, and it does not trigger food versus fuel issues. Additionally, growing carinata provides all the cover-crop benefits related to water quality, soil health, biodiversity and pollination.”

The missing piece of the puzzle, according to Dwivedi, is the lack of local infrastructure for crushing the seed and processing the oil into SAF. His current research focuses on modeling the economic and environmental feasibility of producing and consuming carinata-based SAF across Georgia, Alabama and Florida by taking a supply-chain perspective.

“Our results would be especially relevant to the state of Georgia, which is the sixth-largest consumer of conventional aviation fuel in the country, hosts the busiest airport in the world, and is home to Delta, a leading global airline company,” he said. “I am looking forward to pursuing more research for providing a sustainable alternative to our current model of air travel. Carinata has the potential to be a win-win situation for our rural areas, the aviation industry, and most importantly, climate change.”

Parallels between enzyme catalysis, electrocatalysis, and photoelectrosynthesis

by Daiki Nishiori, Brian L. Wadsworth, Gary F. Moore in Chem Catalysis

With each passing day, the dark side of our addiction to fossil fuels becomes more apparent. In addition to slashing emissions of carbon dioxide, society must find sustainable alternatives to power the modern world. In a new study, Gary Moore and his research group explore different approaches to catalysis, a chemical process that plays an essential role in biological reactions, as well as many industrial applications.

Catalysts are substances that speed up the rates of chemical reactions, without being consumed during the reaction process. Enzyme catalysts are so important in nature that life would be impossible without them, as conditions within living cells are not conducive to many vital chemical processes. Chemical reactions that would otherwise require hours or even days to occur can unfold in under a second with the help of enzyme catalysts.

Chemical catalysts have been used in a variety of human applications, ranging from pharmaceutical development to biodegradable plastics and environmentally safe fertilizers. They may also advance the development of green energy solutions to address the climate crisis, an area Moore’s group has actively pursued.

Overview of an enzymatic reaction

The new study draws on investigations into the behavior of catalysts by Moore and his ASU colleagues as well as other researchers in the field. The current perspective article describes three forms of catalysis — enzymatic, electrocatalytic and photoelectrosynthetic — outlining progress to date and highlighting some of the remaining challenges faced by scientists seeking a comprehensive understanding of these important phenomena.

While a great deal has been learned through the study of enzyme catalysis in living organisms, researchers hope to develop synthetic alternatives that can improve on nature’s designs. “It’s challenging to mimic biological enzymes for catalysis,” Nishiori says. “Biological enzymes have complex, three-dimensional protein structures,” and operate under quite different conditions than most human-engineered catalysts.

Instead, researchers hope to produce a new range of synthetic catalysts to drive chemical reactions with high efficiency. Successful results could greatly improve the industrial production of many products of benefit to society. These include new types of carbon-neutral or carbon-free fuels.

Overview of an electrocatalytic reaction involving a molecular (homogeneous) catalyst and a stationary electrode

“We cover a fair amount of material space in this article, including traditional chemical catalysis by enzymes, as well as electrocatalytic processes mediated by biological and/or synthetic complexes,” Moore says. The study then moves on to describe hybrid systems that capture radiant light energy and use it to drive charge transfer reactions. The obvious parallel in nature is with photosynthetic processes carried out by plants.

But artificial photosynthetic technologies can’t simply replicate nature’s blueprint. In addition to a limited understanding of the structure-function relationships governing their performance, photosynthetic plants convert and store barely 1% of the incident sunlight gathered by their leaves in the form of chemical bonds. These bonds ultimately make up the foods we eat and, on longer-geological time scales, the carbon-based fossil fuels our modern societies rely on. This is all a healthy plant needs to develop and reproduce but is insufficient for human applications.

Example of a photoelectrosynthetic anode for oxygen evolution

Designing new photoelectrosynthetic devices involves using light-gathering technology, similar to current photovoltaic cells, and coupling it to a thin layer of catalytic material. In this scheme, charge carriers are transferred from a semiconductor surface to catalytic sites. Once a catalyst has accumulated enough charge carriers, it enters a so-called activated state, allowing catalysis to proceed. The process can be used to produce hydrogen from water or to produce reduced forms of CO2, including methane, carbon monoxide, liquid fuels, and other industrially useful products.

“In the case of a more traditional solar cell, your ultimate target is converting sunlight into electrical power. The systems we’re developing use solar energy to power energetically uphill chemical transformations,” Moore says. Instead of producing electricity, the impinging sunlight leads to catalyzed chemical reactions, ultimately generating fuels.

“Here, the fuels we are describing are not tied to fossil carbon sources. We can develop chemistry that’s either carbon free, including the transformation of water into hydrogen gas, which could serve as a fuel, or we can use CO2 from the atmosphere to generate carbon-containing fuels,” Moore says. “In this latter example, although the resulting fuels are carbon-based, no new sources of CO2 are liberated into the atmosphere.” The process is a form of carbon recycling.

Moore refers to such technologies as photoelectrosynthetic. While they hold significant promise for producing clean energy and cleaner generation of useful industrial products, understanding the chemistry at both a theoretical and practical level is challenging. The photons of light and charge carriers used to jumpstart catalysis are quantum entities, with particularly subtle properties that researchers are still struggling to accurately model.

Producing effective technologies to address future energy challenges will require a more thorough mathematical understanding of light harvesting dynamics as well as catalytic processes and charge movement. The current study provides a tentative step in this direction. Alongside these advances, researchers in materials science will need to design materials better able to exploit these processes, fabricated from durable and affordable materials.

Examples of materials for light-activated nitrogen reduction and the accumulation of redox equivalents

In addition to the purely scientific hurdles to be addressed, Moore states that changes in public policy will be critical drivers if greener energy technologies are to succeed. “It’s daunting to compete with an existing technology that involves simply drilling a hole in the ground to extract a source of energy that’s already there,” Moore says. A scientifically educated public, able to make informed voting choices that impact how society invests in future infrastructure will also be vital. “Do we want to choose to make investments in technologies that minimize the impact of climate change, or do we continue making use of an energy infrastructure with components and processes that are over a hundred years old?”

Honeybee pollination benefits could inform solar park business cases, planning decisions and environmental sustainability targets

by Alona Armstrong, Lauren Brown, Gemma Davies, J. Duncan Whyatt, Simon G. Potts in Biological Conservation

The value of UK agriculture could be boosted by millions of pounds a year if thousands of honeybee hives were deployed on solar parks across the country, a new study reveals. However, scientists caution that the benefits of managing solar parks for wild pollinators over honeybees should be prioritised where appropriate and should be assessed on a site by site basis.

A team of researchers from Lancaster University and the University of Reading has for the first time quantified the potential economic benefits and costs of installing honeybee hives on solar parks across the UK.

Solar parks are playing an increasingly important role in our national shift towards carbon zero as their contribution to electricity generation rises. However, solar parks take up a lot of land, and as more parks are created to meet clean energy demand the it is important to look at how they can be used to bring about other environmental or commercial benefits.

One opportunity is to install honeybee hives on solar parks. A lot of solar parks are located in areas of intensive agriculture where many wild pollinator habitats have been lost or degraded. Honeybee hives provide ready-made armies providing a pollinating service to increase crop production in surrounding farmland. Although some honeybee hives have been used on solar parks, the potential economic benefits of this were, until now, unknown.

Schematic of the methodology used to determine the pollination service benefit and honeybee hive costs of historic and crop scenarios for field and fruit crops. Spatially explicit land cover data were not available for individual fruit crops. Three scenarios were implemented: (1) to continue business as usual, (2) to maximise the dominant crop, and (3) to maximise economic value, all assuming five-year crop rotations. F. Beans = field beans.

The research team used detailed land cover maps, such as those produced by the Centre of Ecology and Hydrology, to understand where solar parks are located, as well as crop distribution and rotations, existing data on honeybee hives, crop pollination requirements and crop values. They also factored in the cost of installing and managing the honeybee hives on the solar parks.

Using crop distribution patterns in 2017, the researchers found that deploying honeybees on solar parks could have raised the value of crop yields that year by £5.9 million.

The study looked at field crops such as field beans, linseed and oilseed, top fruits such as apples and pears including varieties to make cider and perry, as well as soft fruits such as strawberries, raspberries and blackcurrants.

The findings showed that in England the crop that would potentially benefit the greatest from installing honeybee hives is oilseed, because it is so widely cultivated. Though soft fruits, and especially strawberries, would see the greatest economic benefit per land area given their high market value and relatively high dependency on honeybee pollination.

Based on 2017 data then honeybees on solar parks could boost field crop yields by £2.6 million, top fruits by £1.3 million, and soft fruit yields by £1.9 million. There were also regional patterns in the findings with values being highest in the east and south of England because those are the areas where a greater proportion of oilseed and soft fruits are grown.

They also found that, if taken to the extreme of all UK crops being grown within a 1.5km honeybee foraging radius of solar parks around the UK, then this could boost the value of those crop yields by £80 million a year — but researchers recognise this scenario is unlikely to be possible given other factors.

Land areas (A, C) and honeybee pollination service benefits (B, D) of field beans, linseed and oilseed across regions in England in 2016 (A, B) and 2017 (C, D). Note: no spatially explicit data exists for fruit crops in England.

Given these findings, if UK agriculture wanted to maximise the economic benefits of having honeybees on solar parks then soft fruit growing would need to be prioritised within honeybee foraging zones of 1.5km around solar parks.

However, the researchers are keen to point out that the suitability of placing honeybee hives on solar parks needs to be assessed for each location. This is because not all locations including their climate and soil types are suitable for all crops, and individual farmers have preferences about what and where they produce. Also, different crops vary in their pollination needs and so the research team’s results cannot be generalised across all crop types and varieties.

In addition, great care needs to be taken to ensure the honeybees would not be competing with already established wild pollinator species. The researchers also highlight that where possible encouraging wild pollinators would provide greater ecological benefits than installing honeybee hives.

Dr Alona Armstrong, Senior Lecturer at Lancaster University and lead author of the study, said: “Managing solar parks for honeybees can have positive impacts on crop yields and thus financial returns. But, it is important to consider the suitability on a site by site basis given the potential implications for wild pollinators and the benefits of managing sites for biodiversity more broadly.”

Professor Simon Potts from the University of Reading and co-author of the paper said: “Our study demonstrates how multi-disciplinary research can find novel land management practices which can simultaneously benefit energy producers, farmers, beekeepers and consumers.”

The researchers’ findings will help inform energy policy, future business cases for future solar parks, as well as informing sustainable investments and decisions about including honeybee hives into energy and land management.

Combined solar power and storage as cost-competitive and grid-compatible supply for China’s future carbon-neutral electricity system

by Xi Lu, Shi Chen, Chris P. Nielsen, Chongyu Zhang, Jiacong Li, He Xu, Ye Wu, Shuxiao Wang, Feng Song, Chu Wei, Kebin He, Michael B. McElroy, Jiming Hao in Proceedings of the National Academy of Sciences

At the upcoming UN Climate Change Conference in Glasgow, Scotland, much attention will be focused on China. As the world’s largest CO2 emitter, China’s efforts to decarbonize its energy system will be critical to the goal of limiting the rise in global average surface temperature to 1.5 degrees Celsius.

China has already made major commitments to transitioning its energy systems towards renewables, especially power generation from solar, wind and hydro sources. However, there are many unknowns about the future of solar energy in China, including its cost, technical feasibility and grid compatibility in the coming decades. Recent projections of the cost of future solar energy potential in China have relied on outdated and overestimated costs of solar panels and their installation, and storage technologies like lithium-ion batteries.

How much will solar power really cost in China in the coming decades, including the challenges its inherent variability poses to the grid?

Researchers from Harvard, Tsinghua University in Beijing, Nankai University in Tianjin and Renmin University of China in Beijing have found that solar energy could provide 43.2% of China’s electricity demands in 2060 at less than two-and-a-half U.S. cents per kilowatt-hour. For comparison, coal power tariffs in China ranged 3.6 to 6.5 cents per kilowatt-hour in 2019.

Distribution of technical potentials of utility-scale solar PV of China in 2020. (A) Distribution of capacity factors by grid cell. (B) Distribution of potential capacity expressed in megawatts per square kilometer.

“The findings highlight a crucial energy transition point, not only for China but for other countries, at which combined solar power and storage systems become a cheaper alternative to coal-fired electricity and a more grid-compatible option,” said Michael B. McElroy, the Gilbert Butler Professor of Environmental Studies at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and co-corresponding author of the study.

“Today, subsidy-free solar power has become cheaper than coal power in most parts of China, and this cost-competitive advantage will soon expand to the whole country due to technology advances and cost declines,” said Xi Lu, Associate Professor, School of Environment, Tsinghua University and co-corresponding author of the paper. “Our results demonstrate that the economic competitiveness of solar power combined with investments in storage systems could provide extra benefits for grid dispatch, which will be especially important for operation of future electric systems in China.”

The research team developed an integrated model to assess solar energy potential in China and its cost from 2020–2060. The model first takes into account factors such as land uses throughout China, possible tilt and spacing of solar panels, and meteorological conditions like solar radiation and temperature to estimate the physical potential of solar power across both space and time.

The team then integrated the investment costs and speed of technological changes to capture the evolving cost-competitiveness of solar power relative to coal power now and in the future. Building on this foundation, the study developed an hourly optimization model to evaluate the additional costs of power storage systems needed to smooth the variations of solar output so that it can be integrated into the grid to match electricity demand.

The researchers first found that the physical potential of solar PV, which includes how many solar panels can be installed and how much solar energy they can generate, in China reached 99.2 petawatt-hours in 2020. This is more than twice the country’s total consumption of energy in all forms, including not only electricity but also fuels consumed directly by vehicles, factories, building heating and more. The findings show solar PV is an enormous resource for China’s decarbonization.

Hourly dispatch to achieve the maximum penetration of grid-compatible and cost-competitive solar in the first week of January 2060. (A) Hourly demand and solar supply for the Northwest grid using solar power generation without storage. (B) The same as A but for the East China grid. © The same as A but using solar-plus-storage systems. (D) The same as B but using solar-plus-storage systems.

They then demonstrated its cost-competitiveness, with 78.6% of the potential in 2020 equal to or lower than current prices of local coal-fired power, a share set to grow further. This cost advantage means China can invest in storage capacity, such as batteries, and still cost-effectively supply 7.2 petawatt-hours or 43.2% of country-wide electricity demand by 2060.

“Most now realize that climate change requires transitioning away from fossil energy use,” said Chris P. Nielsen, executive director of the Harvard-China Project and a co-author of the paper. “Not as many realize that decarbonizing the power system is the linchpin, especially as more sectors become electrified, and that accommodation by the grid of renewable variability is the toughest part of the puzzle. It’s a huge breakthrough, and not just for China, if storage can make solar power grid-compatible at a competitive cost.”

“Our research shows that if costs continue to decline, especially for storage, there could be opportunities to power vehicles, heat or cool buildings, or to produce industrial chemicals, all using solar energy. This would extend the climate and environmental benefits of solar energy far beyond the power sector as traditionally conceived,” said Shi Chen, co-first author of the paper who helped lead the study as a Tsinghua Ph.D. student and a visiting fellow at the Harvard-China Project.

Climate change may impair electricity generation and economic viability of future Amazon hydropower

by Rafael M. Almeida, Ayan S. Fleischmann, João P.F. Brêda, Diego S. Cardoso, Hector Angarita, Walter Collischonn, Bruce Forsberg, Roosevelt García-Villacorta, Stephen K. Hamilton, Phillip M. Hannam, Rodrigo Paiva, N. LeRoy Poff, Suresh A. Sethi, Qinru Shi, Carla P. Gomes, Alexander S. Flecker inGlobal Environmental Change

Hydropower is the dominant source of energy in the Amazon region, the world’s largest river basin and a hotspot for future hydropower development. However, a new study warns that in the coming decades, climate change-driven reductions in precipitation and river discharge will diminish the Amazon’s hydropower capacity.

The study’s authors examined 351 proposed hydropower projects in the Amazon basin. Their findings suggest that hydrologic shifts by midcentury will reduce hydropower generation at many locations. As river discharge becomes increasingly variable and hydropower output declines, alternative energy sources like solar and wind are expected to become ever more important.

Co-author Stephen Hamilton, an ecosystem ecologist at Cary Institute of Ecosystem Studies, explains, “Hydropower projects in the Amazon basin are designed to operate under flow regimes based on historic river levels. Climate change is disrupting these patterns, meaning that many existing and proposed projects are unlikely to be as effective under future conditions.”

Using several climate change scenarios defined by the IPCC, the team modeled continental-scale changes in precipitation and river discharge to see where and how hydropower production is likely to shift. They also estimated changes in energy costs, comparing costs of hydropower to solar and wind energy in the Amazon region.

Continent-scale changes in precipitation and runoff, which influence river discharge, were estimated using general circulation models that use climate data to project future precipitation trends. Inputs include information on air temperature, humidity, wind speed, solar radiation, pressure, and precipitation. Power output at proposed dam sites was estimated using information on the maximum and minimum river flows at each site under both current and future climate conditions.

‘Levelized cost of energy’ (LCOE) — the per-unit price of energy needed for an energy production project to break even — was used to determine how climate change would alter energy cost and project feasibility. LCOE takes into account the costs of building, operating, and maintaining proposed energy plants. The team ran projections under current, intermediate, and worst-case climate change scenarios. They also compared projected costs of hydropower to costs of implementing wind or solar power projects.

They found that by midcentury, river flows at proposed dam sites across the Amazon basin are projected to decline by 13–20% overall, with significant regional variability. Declines in the east (the Brazilian Amazon) range from 18–23%. In the west (Andean Amazon countries), where rainfall is likely to increase, flows could rise by 1.5–2.5%. Energy output is projected to reflect these changes in river discharge. Increasingly variable flows in the Brazilian Amazon tributaries mean this region is likely to be most severely affected.

Lead author Rafael Almeida, a postdoctoral researcher at Cornell University who was formerly a visiting graduate student at Cary, explains, “Run-of-river hydropower dams are designed to operate within a particular range of flows. Flows that are too low won’t generate power, and flows that are too high must be ‘spilled’, causing problems, and not generating extra power. As the Brazilian Amazon experiences more variability in precipitation, with higher ‘highs’, lower ‘lows’, and fewer periods of optimal flow, it will mean proposed hydropower plants will operate at full capacity less often.”

In regions where hydropower energy production is projected to diminish, energy costs will increase — in some areas, drastically. In Brazil, the levelized cost of energy for proposed dams could jump by 52–105%.

Almeida says, “We expected to see reduced competitiveness of Amazon hydropower due to climate change, but the projected magnitude is staggering. Looking at dams proposed for Brazil, the cost at which electricity would need to be sold to fully return capital investments could more than double for a quarter of the sites proposed.”

Hamilton says, “Hydropower plants take a long time to plan and build. Many of the proposed projects, if completed, would be coming online close to midcentury. By the time these dams are built, many will not be as reliable or cost effective as expected due to climate change. Meanwhile, solar and wind power are slated to become more economically competitive, conferring greater security with fewer environmental costs than hydropower. Dams block fish migrations, flood upstream environments, and alter river flow patterns downstream, all causing serious ecological and social impacts. Hydropower needs to be designed to operate in concert with alternative energy sources like solar and wind so periods of low river flows do not disrupt electrical grids that supply vital power to cities and industries. New hydropower facilities should be carefully sited in locations of more reliable flows, and designed to operate over a broader range of flows than historical experience would indicate.”

MISC

Subscribe to Paradigm!

Medium. Twitter. Telegram. Telegram Chat. Reddit. LinkedIn.

Main Sources

Research articles

Nature

Science

PLOSone

Techxplore

Science Daily

Nature Energy

Nature Climate Change

Green Technology News

Nature Reviews Earth & Environment

--

--