GT/ Sustainable lithium production

Paradigm
Paradigm
Published in
32 min readJul 17, 2021

Energy & green technology biweekly vol.3, 3d July — 17th July

TL;DR

  • A new study has yielded critical fresh insights into the lithium production process and how it relates to long-term environmental sustainability, particularly in the area of transportation with batteries and electric vehicles.
  • Cheap to produce and long to degrade, plastic was once a manufacturing miracle. Now, plastic is an environmental plague, clogging landfills and choking waterways. A research team has now turned back to nature to develop an approach to degrading the stubborn substance.
  • Batteries are potentially a game-changing technology as we decarbonize our economy, and their benefits are even greater when shared across communities, a new study has found.
  • Climate change mitigation efforts have led to shifts from fossil-fuel dependence to large-scale renewable energy. However, renewable energy sources require significant land and could come at a cost to ecosystems. A new study evaluates potential conflicts between alternative energy strategies and biodiversity conservation.
  • The transportation sector is the largest contributor to greenhouse gas emissions. With the rise of online shopping and just-in-time shipping, electric delivery fleets have emerged as an opportunity to reduce the transportation sector’s environmental impact. New study from University of Michigan shows that when, where and how those fleet vehicles are charged can greatly impact their potential to reduce greenhouse gas emissions.
  • Scientists are homing in on a recipe that would enable the future production of entirely renewable, clean energy from which water would be the only waste product. Using their expertise in chemistry, theoretical physics and artificial intelligence, the team is now fine-tuning the recipe with the genuine belief that the seemingly impossible will one day be reality.
  • Australia’s coastal ecosystems alone save the rest of the world costs of around 23 billion US dollar a year by absorbing CO2 from the atmosphere. Coastal ecosystems such as seagrass meadows, salt marshes and mangrove forests make an important contribution to mitigating climate change.
  • Injecting sulphur into the stratosphere to reduce solar radiation and stop the Greenland ice cap from melting: An interesting scenario, but not without risks. Climatologists have looked into the matter and have tested one of the scenarios put forward using the MAR climate model. The results are mixed.
  • Researchers used remotely-piloted sailboats to gather data on cold air pools, or pockets of cooler air that form when rain evaporates below tropical storm clouds. These hard-to-study phenomena are thought to have broader effects on tropical weather.
  • A single tree along a city street or in a backyard can provide measurable cooling benefits, according to a new study.
  • And more!

Green Technology Market

Green technology is an applicable combination of advanced tools and solutions to conserve natural resources and environment, minimize or mitigate negative impacts from human activities on the environment, and ensure sustainability development. Green technology is also referred to as clean technology or environmental technology which includes technologies, such as IoT, AI, analytics, blockchain, digital twin, security, and cloud, which collect, integrate, and analyze data from various real-time data sources, such as sensors, cameras, and Global Positioning System (GPS).

Green technology, also known as sustainable technology, protects the environment by using various forms of sustainable energy. Some of the best examples of green technologies include solar panels, LED lighting, wind energy, electric vehicles, vertical farming, and composting.

The global Green Technology and Sustainability market size to grow from USD 11.2 billion in 2020 to USD 36.6 billion by 2025, at a Compound Annual Growth Rate (CAGR) of 26.6% during the forecast period. The growing consumer and industrial interest for the use of clean energy resources to conserve environment and increasing use of Radio Frequency Identification sensors across industries are driving the adoption of green technology and sustainability solutions and services in the market.

The blockchain segment is estimated to grow at the highest CAGR: Energy-intensive cryptocurrency mining has caused a spike in carbon emission, and hence blockchain is capable of driving innovation in the field of green technology.

Latest News

Latest Research

Energy, greenhouse gas, and water life cycle analysis of lithium carbonate and lithium hydroxide monohydrate from brine and ore resources and their use in lithium ion battery cathodes and lithium ion batteries

by Jarod C. Kelly, Michael Wang, Qiang Dai, Olumide Winjobi in Resources, Conservation and Recycling

An important new study by researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory has yielded critical fresh insights into the lithium production process and how it relates to long-term environmental sustainability, particularly in the area of transportation with batteries and electric vehicles.

The paper was the result of a unique collaboration with SQM, a Chilean company that is one of the world’s biggest producers of lithium. According to Argonne lifecycle analyst and lead author Jarod Kelly, the researchers — using operational data supplied by SQM — found that the sourcing of lithium, from both a process and location perspective, can strongly affect its associated environmental impacts.

“The results show that concentrated lithium brine and its related end products can vary significantly in energy consumption, greenhouse gas emissions, sulfur dioxide emissions and water consumption depending upon the resource allocation method used,” Kelly explained.

The stages of LCA evaluation in this study

The researchers modeled brine-based lithium extracted from the Salar de Atacama, a large salt flat in northern Chile near the Andes Mountains. The lithium is naturally dried in large ponds to evaporate the water, concentrate the lithium, and remove impurities. Materials and energy are later added to produce lithium carbonate and lithium hydroxide. These two end products are shipped worldwide to battery cathode producers that process them into a variety of battery materials.

The study findings could have major implications for how to optimize lithium production at each stage of the process, which would result in more environmentally-friendly products, particularly battery electric vehicles. The International Energy Agency predicts that demand for lithium may grow by as much as 40 times between 2020 and 2040, mainly due to global deployment of electric vehicles.

Cradle-to-gate life cycle GHG results for NMC622 cathode materials with lithium from different sources.

“Examination of current lithium production and the pursuit of future production, including from within the U.S., are critical to sustaining electric vehicle deployment,” said Michael Wang, director of the Systems Assessment Center at Argonne and a study co-author.

“This study establishes a baseline for current practices and shows us potential areas for improvement,” added Kelly. “With further research, it will be possible to use this information to help develop best practices for producing lithium in the most sustainable way.”

SQM initially approached Argonne last year about a collaboration in support of ambitious sustainability targets the company recently unveiled.

“According to our sustainability plan, we want to look more closely at carbon emissions, water consumption and energy consumption in our lithium products, and see how it affects the rest of the value chain,” said Veronica Gautier, SQM’s head of innovation. “This information will help us achieve our goal of being carbon neutral by 2030.”

The analysis will also help address an overarching question in the global trend toward the electrification of transportation with battery electric vehicles, Wang said.

“Often electrification is for the purpose of pursuing environmental sustainability. But we need to know more about lithium battery production before we can say we are truly on a sustainable path,” he said. “This study provides crucial insights into the electric mobility value chain.”

Cradle-to-gate life cycle GHG results for batteries by input and process with lithium from different sources.

The formal analysis used Argonne’s open-source modeling tool, GREET (Greenhouse gases Regulated Emissions and Energy in Technologies), with detailed data and technical insight coming from SQM. In addition to the brine-based lithium extracted in Chile, the researchers augmented their data by modeling ore-based lithium extracted from spodumene ore in Western Australia.

Kelly said it was the first analysis of its kind to be based on such comprehensive data from an industrial partner. Gautier added that SQM was pleased that the study results were now publicly available and would help further global efforts toward ensuring responsible and sustainable lithium production.

“It is important for us to have full and complete transparency about how our process works, and we’re excited to leverage Argonne’s experience and expertise,” she said. “Sharing this information will have great educational value.”

Positive Charge Introduction on the Surface of Thermostabilized PET Hydrolase Facilitates PET Binding and Degradation

by Akihiko Nakamura, Naoya Kobayashi, Nobuyasu Koga, Ryota Iino in ACS Catalysis

Cheap to produce and long to degrade, plastic was once a manufacturing miracle. Now, plastic is an environmental plague, clogging landfills and choking waterways. A Japan-based research team has turned back to nature to develop an approach to degrading the stubborn substance. Similar to how a protein binds to cellulose in plants or to chitin in crustaceans to initiate decomposition, an engineered protein is on its way to binding to plastic particles in an effort to more efficiently break them down.

“Polyethylene terephthalate (PET) is produced and used in large quantities in modern society due to its low cost and ease of processing,” said paper author Ryota Iino, professor of the Institute for Molecular Science (IMS). “However, in recent years, from the perspective of realizing a sustainable society, the complete recycling of PET in industry and the removal of PET from the natural environment have become global issues. To resolve these issues, it is very important to understand how to degrade PET efficiently.”

The researchers investigated and engineered an enzyme cloned from a library of genetic materials collected from nature. This enzyme — called PET2 — was found to facilitate the degradation of PET by accelerating the reaction between PET’s chemical components and water.

Using single-molecule imaging analysis, the team found that the way the enzyme binds to the surface of PET actually limited the rate of degradation.

Comparison of the structures around the catalytic triad. (A) PET2 2M. (B) Lipase from Thermomyces lanuginose (PDB ID: 1DT3). © LipA from Bacillus subtilis (PDB ID: 1I6W). The catalytic triad residues are shown in cyan on the same position. Lipase from T. lanuginose has a lid domain covering the catalytic triad.

“We also revealed that by introducing positive charges on the surface of PET-degrading enzyme, the binding rate to the PET surface can be increased,” Iino said.

The positive charges react favorably to the PET surface, so more of the enzyme can bind and more effectively degrade the PET. The researchers also found that while engineered PET2 showed high thermal stability and highest activity at 68 degrees Celsius — slightly lower than most residential kitchen ovens can go — it may be more effective at higher temperatures where PET’s molecular bonds become more flexible and breakable.

“Our ultimate goal is to create a bacterium that can sense PET in the environment, move toward it, and degrade it,” Iino said. Such a bacterium would then be able to turn the degraded PET into energy useful for other organisms, effectively acting as an automated recycling center for plastic. “In nature, chitin and cellulose are recycled in this way.”

Degradation of PET thin-film coated on cover glass.

Iino is also affiliated with the School of Physical Sciences at The Graduate University for Advanced Studies (SOKENDAI). Other contributors include Akihiko Nakamura, Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, and the Shizuoka Institute for the Study of Marine Biology and Chemistry; and Naoya Kobayashi and Nobuyasu Koga, Exploratory Research Center on Life and Living Systems (ExCELLS), NINS. Koga is also affiliated with IMS, NINS, and SOKENDAI.

Sizing domestic batteries for load smoothing and peak shaving based on real-world demand data

by Jason Mair, Kiti Suomalainen, David M. Eyers, Michael W. Jack in Energy and Buildings

Batteries are potentially a game-changing technology as we decarbonize our economy, and their benefits are even greater when shared across communities, a University of Otago-led study has found.

Co-author Associate Professor Michael Jack, Director of the Energy Programme in the Department of Physics, says reducing costs are seeing rapid deployment of batteries for household use, mainly for storing solar and wind power for later use, but they could have a variety of uses in a future electricity grid.

“For example, they could be used to feed energy back into the grid when there is a shortfall in renewable supply. Or they could allow a house to reduce its demand on the grid during times of constraint, thus reducing the need for expensive new lines.

“As we move towards more renewable energy, and increase our use of electric vehicles, these services would be beneficial to a local community and the national grid, not just the individual house with the battery,” he says.

The study focused on finding the capacity a battery would need to have to keep the peak demand below a certain value for both individual houses and a group of houses. The researchers considered both load smoothing around the average, and peak shaving, where the battery ensures grid power demand does not exceed a set threshold.

“Our key result is that the size of the battery required for this purpose is much smaller — up to 90 per cent smaller — if the houses are treated collectively rather than individually. For instance, if peak shaving occurred for demand above 3 kW per house, deploying batteries individually for 20 houses would require 120 kWh of storage, whereas deploying them collectively would only require 7 kWh. Sharing batteries or having one battery per 20 houses will be a much cheaper approach to providing these services.

“Another important finding was that as peaks are mainly in winter, the battery would still be largely available for storing energy from solar cells in summer, so this would be an additional service and not competing with the main use of the battery,” Associate Professor Jack says.

While electricity markets are not currently set up to harness this potential, the situation is rapidly changing.

“There is currently a trial lead by Aurora Energy and SolarZero to use batteries in the way we have described in our paper to solve issues with constrained lines in upper Clutha. Once proven, this model has the potential to become much more widespread,” he says.

In the future, many households may have batteries and be using these, or batteries within their electric vehicles, to provide services to the grid. These batteries and other appliances in homes and businesses will have smart controllers that enable them to reduce demand or feed electricity back into the grid to accommodate the fluctuations of variable renewable supply and minimize the need for grid infrastructure. People responding in this way would be paid for their services to the wider grid.

“This could enable a much lower cost, collective, route to decarbonizing New Zealand’s energy system.”

The blue carbon wealth of nations

by Christine Bertram, Martin Quaas, Thorsten B. H. Reusch, Athanasios T. Vafeidis, Claudia Wolff, Wilfried Rickels in Nature Climate Change

According to the study, Australia, Indonesia and the USA provide the largest carbon storage potential with their coastal ecosystems. The team also calculated which countries benefit most from the coastal CO2 uptake worldwide. The different ways in which countries are affected by climate change are quantified by using the so-called social costs of carbon.

“If we take into account the differences in marginal climate damages that occur in each country, we find that Australia and Indonesia are clearly the largest donors in terms of globally avoided climate damages originating from coastal CO2 uptake, as they themselves derive comparatively little benefit from the high storage potential of their coasts,” says Wilfried Rickels, who heads the Global Commons and Climate Policy Research Center at the Kiel Institute.

“The U.S., on the other hand, also store a lot of carbon in their coastal ecosystems, but at the same time benefit the most from natural sinks behind India and China. In monetary terms, the three countries realize annual welfare gains of about 26.4 billion US dollar (India), 16.6 billion US dollar (China) and 14.7 billion US dollar (U.S.) thanks to global coastal ecosystems and the resulting lower climate impact costs.”

The basis for the monetary calculations are the so-called social cost of carbon, which allow assessing the contribution of coastal carbon uptake in the “inclusive wealth” concept. ‘Inclusive wealth’ is defined as the totality of all natural and human-made capital stocks, valued with so-called shadow prices, i.e. the contributions to social welfare. Among other factors, the absolute scarcity of resources plays an important role for shadow prices. Atmospheric CO2 has a negative impact on welfare primarily through climate change. However, countries are differently affected by climate change and accordingly country-specific shadow prices are used in the study.

a, Global map of mean annual blue carbon sequestration potentials by country. b, Bar chart of the five countries with the largest and smallest mean annual blue carbon sequestration potentials. Mean national carbon sequestration potentials are based on spatial ecosystem coverages and mean global net sequestration rates, both per ecosystem type. Error bars in b represent ±1 s.e.m. of global carbon sequestration rates.

The analysis does not include other carbon sinks or emissions from energy and industry. When carbon emissions from energy and industry are also considered, only Guinea-Bissau, Belize, Vanuatu, Sierra Leone, Solomon Islands, Guinea, Comoros, Samoa, Madagascar, and Papua New Guinea make a net positive contribution through their coastal ecosystems, since they store more CO2 in coastal ecosystems than they emit in total.

The study also emphasizes that carbon storage is only a small part of positive impacts of coastal ecosystems for humans. “Coastal ecosystems are an essential component of marine ecosystems and are therefore particularly important for marine biodiversity and for fisheries. At the same time, they contribute to flood and coastal protection and are therefore important for adaptation to climate change,” emphasizes Martin Quaas, who heads the Biodiversity Economics research group at iDiv and UL.

Global map with positive and negative net blue carbon wealth redistributions (surpluses and deficits). b, Bar chart with ten largest donor and recipient countries. Wealth redistributions are calculated using CSCC averaged over all damage functions for the scenario combinations SSP2/RCP6.0 with one growth-adjusted discount rate (pure rate of time preference per year, ρ = 2%; elasticity of marginal utility substitution, μ = 1.5). Error bars represent uncertainties in global sequestration rates and estimated CSCC reflected by standard errors. USA: The United States of America, IDN: Indonesia, CHN: China, JPN: Japan, SAU: Saudi Arabia, ARE: United Arab Emirates, QAT: Qatar, BRA: Brazil, PAK: Pakistan, KWT: Kuwait, MDG: Madagascar, MEX: Mexico, RUS: Russian Federation, PHL: Philippines, PNG: Papua New Guinea, GIN: Guinea, GNB: Guinea-Bissau, CUB: Cuba, IDN: Indonesia, AUS: Australia. c, Blue carbon wealth redistributions on the continent-level. N&C Am: North and Central America, S Am: South America, Oceania: Australia and Oceania.

In any case, there is currently still a very strong focus on afforestation on land when it comes to the challenges of achieving the Paris climate goals. “Marine CO2 uptake as well as its enhancement requires more attention in the debate on net-zero greenhouse gas emissions and net-negative CO2 emissions targets,” Rickels points out. Especially a possible weakening of the marine carbon sinks would require even more significant mitigation and carbon dioxide removal efforts. “The coasts, with their numerous different user groups as well as possible conflicts of use, have a special role to play here.”

The natural capital approach used in the study is suitable for assessing the redistribution resulting from CO2 emissions and CO2 sinks, which, unlike existing market-based assessments, is not influenced by the stringency of the underlying climate policy. The researchers plan to explore this question in further studies.

Charging Strategies to Minimize Greenhouse Gas Emissions of Electrified Delivery Vehicles

by Maxwell Woody, Parth Vaishnav, Michael T. Craig, Geoffrey M. Lewis, Gregory A. Keoleian in Environmental Science & Technology

The transportation sector is the largest contributor to greenhouse gas emissions in the United States, and a lot of attention has been devoted to electric passenger vehicles and their potential to help reduce those emissions. But with the rise of online shopping and just-in-time shipping, electric delivery fleets have emerged as another opportunity to reduce the transportation sector’s environmental impact.

Though EVs represent a small fraction of delivery vehicles today, the number is growing. In 2019, Amazon announced plans to obtain 100,000 electric delivery vehicles. UPS has ordered 10,000 of them and FedEx plans to be fully electric by 2040.

Now, a study from University of Michigan researchers shows that when, where and how those fleet vehicles are charged can greatly impact their potential to reduce greenhouse gas emissions.

A key point of the study is that both the emissions directly tied to charging the vehicles and emissions that result from manufacturing the batteries must be considered. Charging practices that shorten a battery’s lifetime will lead to early battery replacement, adding to the total greenhouse gas emissions associated with that vehicle.

The U-M researchers found that 50% to 80% of the lifetime emissions associated with an electric delivery vehicle’s battery occur during charging. Therefore, charging from a cleaner energy source — such as an electrical grid with lots of renewables — is one of the most impactful ways to lower the emissions of an electric vehicle.

When both charging and battery degradation were considered, the researchers found that greenhouse gas emissions could be lowered by as much as 37% by optimizing charging strategies.

And, surprisingly, they also found that even in the most carbon-intensive regions of the United States, electric delivery vehicles resulted in fewer greenhouse gas emissions than their gasoline or diesel counterparts.

“Our evaluation strategy leads to two main recommendations for companies investing in fleets of electric vehicles,” said Maxwell Woody of U-M’s Center for Sustainable Systems, lead author of the study.

“The first is to consider battery degradation when determining when to charge and how much to charge. Some charging strategies can extend battery lifetime, and this will both lower greenhouse gas emissions and protect the company’s investment.”

The U-M team’s second recommendation to fleet owners is to consider where the energy charging the vehicle comes from. A vehicle charged from solar or wind energy and a vehicle charged from a coal- or natural gas-fired power plant will have very different environmental impacts.

“Considering the charging source can help companies determine the best places to charge, as local grids vary across the country. Companies should prioritize fleet electrification in regions that provide the greatest carbon-reduction benefits,” said Woody, a recent master’s graduate of U-M’s School for Environment and Sustainability who now works as a research area specialist at the Center for Sustainable Systems.

In their modeling study, the researchers analyzed four charging strategies and looked at their lifetime environmental impacts. The new U-M study goes beyond previous work by combining the regional and temporal variation in charging emissions with the impact of charging on battery degradation.

The researchers showed that a baseline charging scenario in which a vehicle is fully charged immediately upon returning to a central depot resulted in the highest emissions. Employing alternative charging methods led to emissions reductions of 8% to 37%.

a) Overview of the model. b) Comparison of examples of the six charging profiles for the 60-mile route scenario, including midpoint charging. When the state of charge is increasing, the battery is charging. When the state of charge is decreasing, the battery is discharging (vehicle en route). When the state of charge is constant the vehicle is parked at the depot. For the 40- and 80-mile route scenarios, SOC in the full charging scenarios is 73% — 100% and 47% — 100%, respectively, in the midpoint charging scenarios is 37% — 63% and 23% — 77%, respectively, and in the delayed charging scenarios is 10% — 37% and 10% — 63%, respectively.

“Charging the vehicle as soon as it returns and charging the vehicle up to 100% result in a lot of time spent sitting at the depot/charging station with a full battery. This extra time spent fully charged will cause the battery to wear out more quickly — so quickly that the battery may need to be replaced sometime in the vehicle’s lifetime,” said study corresponding author Parth Vaishnav, assistant professor at the U-M School for Environment and Sustainability.

“Creating this additional battery produces additional greenhouse gas emissions, as well as additional costs.”

Charging the battery only enough to complete the day’s route, a practice the researchers called sufficient charging, led to a large increase in battery lifetime — in some cases more than doubling it. As a result, emissions tied to battery production were reduced.

Overall, charging strategies that minimized greenhouse gas emissions typically lowered costs as well. In most cases, delaying charging until the vehicle was close to departure, combined with sufficient charging, was the optimal strategy for both cost and emissions.

“The most important finding is that there is a big opportunity here to lower emissions,” said study co-author Greg Keoleian, U-M professor of environment and sustainability and director of the U-M Center for Sustainable Systems.

“Electric delivery vehicles only make up a small proportion of delivery vehicles right now, but that number is expected to increase in the coming years. Establishing the best practices for charging now, as these vehicles are starting to be deployed in larger numbers, is a critical step toward lowering greenhouse gas emissions.”

Brief communication: Reduction in the future Greenland ice sheet surface melt with the help of solar geoengineering

by Xavier Fettweis, Stefan Hofer, Roland Séférian, Charles Amory, Alison Delhasse, Sébastien Doutreloup, Christoph Kittel, Charlotte Lang, Joris Van Bever, Florent Veillon, Peter Irvine in The Cryosphere

Injecting sulphur into the stratosphere to reduce solar radiation and stop the Greenland ice cap from melting. An interesting scenario, but not without risks. Climatologists from the University of Liège have looked into the matter and have tested one of the scenarios put forward using the MAR climate model developed at the University of Liège.

The Greenland ice sheet will lose mass at an accelerated rate throughout the 21st century, with a direct link between anthropogenic greenhouse gas emissions and the extent of Greenland’s mass loss. To combat this phenomenon, and therefore global warming, it is essential to reduce our greenhouse gas emissions.

Every day new ideas emerge to slow down global warming, such as the use of solar geoengineering, a climate intervention that consists of artificially reducing solar radiation above the ice caps and thus limiting the melting of the ice. How can this be done? The idea is to inject sulphur into the stratosphere, a stable meteorological zone located between 8 and 15 km above sea level in the atmosphere,” explains Xavier Fettweis,climatologist and director of the Climatology Laboratory at ULiège. The sulphur will then act as a sort of mirror that will reflect part of the solar radiation back into space.”

An intervention which therefore makes it possible to reduce the amount of sunshine on earth, similar to what happens during volcanic eruptions. In 1991, the eruption of Pinatubo (Philippines) injected millions of tonnes of sulphur dioxide into the stratosphere, causing a drop in global temperatures of around 0.5°C. This observation led to the development of solar geoengineering scenarios. Are these scenarios really reliable and risk-free? This is what the ULiège climatologists wanted to test.

We used a plausible scenario of solar geoengineering (G6solar) that would reduce global warming by a factor of 2 on a global scale compared with the most pessimistic scenario in which nothing would be done about the climate,” continues Xavier Fettweis. By forcing the MAR (Regional Atmospheric Model) developed at ULiège to use this scenario, we show that the reduction in solar radiation associated with this scenario would make it possible to locally reduce the melting at the surface of the Greenland ice sheet by 6% in addition to the global reduction in global warming.

While these results seem encouraging, the researchers insist that this type of scenario would not be sufficient to maintain the ice cap in a stable state by the end of this century. Moreover, this type of intervention is not without risk since it could have a significant impact on the ozone layer and on water cycles and precipitation, accentuating the disparities between wet and dry regions. Only solar geoengineering scenarios, which are much more ambitious but becoming unrealistic and dangerous, would make it possible to save the cap,” concludes Xavier Fettweis. We are talking here about human and intentional intervention in the climate. A plan B that is not! It is therefore urgent to drastically reduce our greenhouse gas emissions by means that we know but are struggling to implement.

High-throughput screening and rational design to drive discovery in molecular water oxidation catalysis

by Michael John Craig, Max García-Melchor in Cell Reports Physical Science

Scientists from Trinity College Dublin are homing in on a recipe that would enable the future production of entirely renewable, clean energy from which water would be the only waste product.

Using their expertise in chemistry, theoretical physics and artificial intelligence, the team is now fine-tuning the recipe with the genuine belief that the seemingly impossible will one day be reality.

Initial work in this area, reported just under two years ago, yielded promise. That promise has now been amplified significantly.

Reducing humanity’s carbon dioxide (CO2) emissions is arguably the greatest challenge facing 21stcentury civilisation — especially given the increasing global population and the heightened energy demands that come with it.

One beacon of hope is the idea that we could use renewable electricity to split water (H2O) to produce green, energy-rich hydrogen (H2), which could then be stored and used in fuel cells. This is an especially interesting prospect in a situation where wind and solar energy sources produce electricity to split water, as this would allow us to store energy for use when those renewable sources are not available.

The essential problem, however, is that water is very stable and requires a great deal of energy to break up; there is no point using much more energy than you get back from such an effort. A particularly major hurdle to clear is this “overpotential” associated with the production of oxygen, which is the bottleneck reaction in splitting water to produce H2.

Although certain elements are effective at splitting water, such as Ruthenium or Iridium, these are prohibitively expensive and scarce for global commercialisation. Other, cheaper options tend to suffer in terms of their efficiency and/or their robustness. In fact, at present, nobody has discovered catalysts that are cost-effective and robust for significant periods of time.

So, how do you solve such a riddle? Stop before you imagine lab coats, glasses, beakers and funny smells; this work was done entirely through a computer.

By bringing together chemists and theoretical physicists, the Trinity team behind the latest breakthrough combined chemistry smarts with very powerful computers to find one of the “holy grails” of catalysis.

Common OER mechanisms. Catalytic cycle depicting the OER mechanisms by water nucleophilic attack (WNA) and the interaction of two metal-oxo units (I2M). Red, white, and purple spheres represent oxygen, hydrogen, and metal atoms, respectively, and the teal spheres represent a general ligand skeleton.

Then: Two years ago, the team discovered that science had been underestimating the activity of some of the more reactive catalysts and, as a result, the dreaded “overpotential” hurdle seemed easier to clear. Furthermore, in refining a long-accepted theoretical model used to predict the efficiency of water splitting catalysts, they made it far easier to search for the elusive “green bullet” catalyst.

Now: Their subsequent searches, made using an automated combinatorial approach and advanced quantum chemical modelling, have pinpointed nine earth-abundant combinations of metals and ligands (which glue them together to generate the catalysts) as highly promising leads for experimental investigation.

Three metals stand out (chromium, manganese, iron) for the team as being especially promising. Thousands of catalysts based around these key components can now be placed in a melting pot and assessed for their abilities as the hunt for the magic combination continues.

OER volcano plots and metal-specific scaling relations (A–C) Two-dimensional volcano plots using the conventional OER descriptor representing a PCET between oxidation states M(III) and M(IV) (A); the extra one-electron oxidation descriptor, in, with dashed line denoting the cutoff point of 400 mV overpotential (B); and the OER descriptor representing a PCET between oxidation states M(IV) and M(V) (c).

Max García-Melchor, Ussher Assistant Professor in Chemistry at Trinity, is the senior author on the landmark research. He said:

“Two years ago, our work had made the hunt for the holy grail of catalysts seem a little more manageable. Now, we have taken another major leap forward by narrowing the search area significantly and speeding up the way we search.

“Until recently we were looking for a tiny needle in a huge haystack. After reducing the size of the haystack, we have now hoovered up plenty of the remaining hay. To put a sense of scale on this, two years ago we had screened 17 catalysts. Now we have screened 444 and believe it won’t be long before we have a database with 80,000 ‘screenable’ catalysts in it.

“‘How can we live sustainably?’ That is arguably the biggest and most pressing question facing 21st century society. I believe researchers from all disciplines can help to answer that, and we feel a particular strength of our pursuit is the multi-disciplinary approach we are taking.”

Michael Craig, PhD Candidate at Trinity, is the first author of the journal article. He added:

“It seems hopeful that science could provide the world with entirely renewable energy, and this latest work provides a theoretical basis to optimise sustainable ways to store this energy and goes beyond that by pinpointing specific metals that offer the greatest promise.

“A lot of research has focused on the effective yet prohibitively expensive metals as possible candidates, even though these are far too rare to do the heavy lifting required to store enough hydrogen for society. We are focused on finding a long-term, viable option. And we hope we will.”

Cold Pools Observed by Uncrewed Surface Vehicles in the Central and Eastern Tropical Pacific

by Samantha M. Wills, Meghan F. Cronin, Dongxiao Zhang in Geophysical Research Letters

Conditions in the tropical ocean affect weather patterns worldwide. The most well-known examples are El Niño or La Niña events, but scientists believe other key elements of the tropical climate remain undiscovered.

In a study, scientists from the University of Washington and NOAA’s Pacific Marine Environmental Laboratory use remotely-piloted sailboats to gather data on cold air pools, or pockets of cooler air that form below tropical storm clouds.

“Atmospheric cold pools are cold air masses that flow outward beneath intense thunderstorms and alter the surrounding environment,” said lead author Samantha Wills, a postdoctoral researcher at the Cooperative Institute for Climate, Ocean and Ecosystem Studies. “They are a key source of variability in surface temperature, wind and moisture over the ocean.”

The paper is one of the first tropical Pacific studies to rely on data from Saildrones, wind-propelled sailing drones with a tall, hard wing and solar-powered scientific instruments. Co-authors on the NOAA-funded study are Dongxiao Zhang at CICOES and Meghan Cronin at NOAA.

(a) Saildrone USV tracks (light gray contours) and locations of sampled cold pool events (blue dots) from the 2017, 2018, and 2019 Missions, collectively. Background shading and contours represent the climatological-mean September-December (SOND) precipitation rates (mm/day) and SST field (°C), respectively, for the 2017–2019 time period. TAO buoy locations are denoted by closed magenta circles. (b–d) Same as in (a), except for the individual (b) 2019, (c) 2018, and (d) 2017 Missions. The maps are zoomed in on the individual mission tracks, labeled with dates (purple text) to highlight the trajectories. Mean precipitation and SST are shown in each panel for the respective 2017, 2018, and 2019 SOND seasons.

Atmospheric cold pools produce dramatic changes in air temperature and wind speed near the surface of the tropical ocean. The pockets of cooler air form when rain evaporates below thunderstorm clouds. These relatively dense air masses, ranging between 6 to 125 miles (10 to 200 kilometers) across, lead to downdrafts that, upon hitting the ocean surface, produce temperature fronts and strong winds that affect their surroundings. How this affects the larger atmospheric circulation is unclear.

“Results from previous studies suggest that cold pools are important for triggering and organizing storm activity over tropical ocean regions,” Wills said.

To understand the possible role of cold pools in larger tropical climate cycles, scientists need detailed measurements of these events, but it is hard to witness an event as it happens. The new study used uncrewed surface vehicles, or USVs, to observe the phenomena.

Over three multi-month missions between 2017 and 2019, 10 USVs covered over 85,000 miles (137,000 kilometers) and made measurements of more than 300 cold pool events, defined as temperature drops of at least 1.5 degrees Celsius in 10 minutes. In one case, a fleet of four vehicles separated by several miles captured the minute-by-minute evolution of an event and revealed how the cold pool propagated across the region.

Ensemble-mean composites of 1-min mean air temperature (°C; a), wind speed (m/s; b), sea level pressure (hPa; c), specific humidity (g/kg; d), SST (°C; e), and sea surface salinity (PSU; f) associated with cold pool events sampled by Saildrone USVs across all three missions. Error bars are shown in blue and denote the standard error of the ensemble mean at each time step based on 321 degrees of freedom. Anomalies are calculated relative to the −2 h mean field, and negative (positive) lags indicate the anomalous fields before (after) a cold pool front, defined to begin at lag-0.

“This technology is exciting as it allows us to collect observations over hard-to-reach, under-sampled ocean regions for extended periods of time,” Wills said.

The paper includes observations of air temperature, wind speed, humidity, air pressure, sea surface temperature and ocean salinity during cold pool events. The authors use the data to better describe these phenomena, including how much and how quickly air temperatures drops, how long it takes the wind to reach peak speeds, and how sea surface temperature changes nearby. Results can be used to evaluate mathematical models of tropical convection and explore more questions, like how the gusts created by the temperature difference affect the transfer of heat between the air and ocean.

Global Biodiversity Implications of Alternative Electrification Strategies Under the Shared Socioeconomic Pathways

by Ryan A. McManamay, Chris R. Vernon, Henriette I. Jager. in Biological Conservation

Climate change mitigation efforts have led to shifts from fossil-fuel dependence to large-scale renewable energy. However, renewable energy sources require significant land and could come at a cost to ecosystems. A new study led by Ryan McManamay, Ph.D., assistant professor of environmental science at Baylor University, evaluates potential conflicts between alternative energy strategies and biodiversity conservation.

The study evaluates potential tradeoffs between climate benefits and energy costs, especially any negative impacts on biodiversity. While the environmental consequences of some renewable energy sources, like hydropower, have been widely studied, the large-scale impacts of other renewables, like solar, aren’t well known.

“The study points to a need for the global community to understand the opposing endpoints of sustainability, which are scale-dependent,” McManamay said. “At one endpoint, efforts to mitigate climate change at global scales via large-scale energy transitions may be completely incognizant of the consequences on local biodiversity. Likewise, local conservationists may not appreciate the magnitude of energy transitions required to shift global carbon emissions. Finally, I think there is a broad misconception among much of the community that if renewable energies are good for climate, they must also be good for the local ecosystem. Energies like solar have the potential to be deployed haphazardly with that mindset.”

The challenges of climate mitigation in relation to different climate policy scenarios are projected in five Shared Socio-economic Pathways (SSPs) — qualitative descriptions of plausible alternative socio-economic development in the next century. The SSPs include alternative projections in deployment of electricity generations by technology. Considering scenarios under the SSPs, ecological footprinting was used to evaluate the potential land and biodiversity tradeoffs of 10 different energy sources: solar photovoltaic, concentrated solar power, wind, hydropower, coal, conventional oil, conventional gas, unconventional oil, unconventional gas, and biomass.

“Ecological footprinting took into account land-use efficiencies of each technology as well as estimates of the degree of habitat alteration arising from technology deployment,” McManamay said. “This provides a standardized way to compare the biodiversity consequences of large-scale deployment of alternative energy technologies.”

Researchers estimated a biodiversity footprint for each of the 10 energy sources by overlaying energy densities and habitat alteration probabilities with biodiversity patterns. They then used spatial modeling to examine regional variations in future energy deployment and potential biodiversity impacts at a high-resolution. Different biodiversity footprints were scored based on their impact and a cumulative biodiversity score was determined for each of the 10 energy sources.

The cumulative impact scores among the SSPs showed significant and consistent differences — the fossil-fueled development pathway (SSP 5) had the highest impacts while the regional rivalry scenario (SSP3) had the lowest. The sustainability-focused scenario (SSP1) represented a moderate impact score by comparison. Unexpectedly, the variation among SSPs didn’t show a clear tradeoff between global climate mitigation and cumulative biodiversity impact.

“It was surprising to see the lack of a clear tradeoffs among sustainability endpoints,” McManamay said. “This elicited us to take a deeper look into differences among the SSPs. Although SSP5 is termed ‘fossil-fueled’ development, the pathway includes significant technological advances in both advanced fossil and renewable technologies to meet highly consumptive, energy-luxurious lifestyles. In other words, the biodiversity impacts are more related to total energy deployment than fossil versus renewable technologies. Although SSP1 is also characterized by significant renewable energy deployment, overall energy demand decreases due to increases in energy efficiencies. So, our work suggests that climate mitigation may not necessarily have to be at odds with biodiversity conservation.”

Additionally, land constraints accounted for the most variation in biodiversity impact, particularly with regard to protected land use. Downscaled electricity generation scenarios were constrained by alternative land conservation and energy development policies.

The results offer an approximation of land and biodiversity impacts of future energy strategies outlined in the SSPs. While there were differences in the SSPs, the impact scores suggest that land protection measures and energy diversification could have greater implications for biodiversity challenges than the national-level global energy pathways outlined in the SSPs. Future planning and objectives for climate mitigation will require both broad and local consideration of biodiversity challenges.

Spatial configuration and time of day impacts the magnitude of urban tree canopy cooling

by Michael Alonzo, Matthew E Baker, Yuemeng Gao, Vivek Shandas in Environmental Research Letters

A single tree along a city street or in a backyard can provide measurable cooling benefits, according to a new study from American University. The research shows that “distributed” trees, those that are stand-alone and scattered throughout urban neighborhoods, can help to reduce evening heat. The research suggests that planting individual trees can be a strategy to mitigate urban heat, particularly in areas where land for parks can be scarce.

“There are plenty of good reasons to plant trees, but our study shows we shouldn’t underestimate the role that individual trees can play in mitigating heat in urban areas,” said Michael Alonzo, assistant professor of environmental science and lead author of the new study. “City planners can take advantage of the small spaces that abound in urban areas to plant individual trees.”

While urban parks provide important mid-day cooling for residents and visitors, the key to cooling from individual trees happens in the evening. In the new study, which was conducted in Washington, D.C., cooling benefits from distributed trees were found to occur around 6 or 7 p.m. and after sunset. The study revealed lower temperatures in neighborhoods where at least half the area was covered by canopy from distributed trees. Temperatures were 1.4 degrees Celsius cooler in the evening compared with areas with few trees. Even in the predawn hour, areas with only modest distributed canopy cover (about 20 percent of the area) were cooler than those with no trees, showing that on average, afternoon and evening cooling effects last well into the night, Alonzo added.

To arrive at the findings, Alonzo and his colleagues examined air temperature readings. The data was collected over one hot summer day in 2018, across different areas in Washington, D.C. and at multiple times throughout the day, resulting in more than 70,000 air temperature readings. In their analysis, Alonzo and his colleagues examined tree canopy over paved surfaces, over unpaved surfaces, and both patches such as parks, and distributed trees, such as those one might plant in their back or front yards.

The new study confirms that planting individual trees should be considered as part of a strategy to combat rising temperatures in urban areas. In hot summer months many cities across the United States turn into “heat islands.” Due to the urban heat island effect, urban areas, with fewer green spaces and higher amounts of impervious surface, get hotter compared to their rural surroundings.

In urban areas, people are more likely to live adjacent to distributed trees rather than parks. In D.C., there are many places to plant individual trees where canopy will shade paved or unpaved surfaces: on streets with single family homes, streets with rowhouses, backyard or small park plantings, Alonzo said. This opens up avenues for increasing the racial and socioeconomic equity of tree planting, but more effort is required to first reduce impervious surface cover in the most built-up residential and commercial districts, Alonzo added. The top five trees along D.C.’s streets include several species of maples, oaks and elms, all of which provide plentiful shade.

Climate studies show that urban temperatures are warming at all times of day including evenings. Yet studying the cooling benefits from individual trees, as well as their benefits during evening hours, has not been widely researched, Alonzo said, and this is an area scientists should continue to explore. More research will be needed in other locations in the United States and under different weather conditions. Alonzo also plans to conduct more research and has collected air temperature readings by bicycle around D.C. during the pandemic.

Though the study was conducted in D.C., Alonzo said the findings are likely applicable along the East Coast or in other cities with a similar climate.

“Evenings are not quite the respite from heat that we once had,” Alonzo said. “These distributed trees do help the city cool off in the evening and that’s important for human health.”

MISC

Subscribe to Paradigm!

Medium. Twitter. Telegram. Telegram Chat. Reddit. LinkedIn.

Main Sources

Research articles

Nature

Science

PLOSone

Techxplore

Science Daily

Nature Energy

Nature Climate Change

Green Technology News

Nature Reviews Earth & Environment

--

--