Paradigm
Published in

Paradigm

RT/ Engineers have created electronics-free soft legged robot

Robotics biweekly vol.25, 11th February — 24th February

TL;DR

  • Engineers at the University of California San Diego have created a four-legged soft robot that doesn’t need any electronics to work. The robot only needs a constant source of pressurized air for all its functions, including its controls and locomotion systems.
  • Researchers at the University of Colorado Boulder have developed a new, low-cost wearable device that transforms the human body into a biological battery.
  • The combination of new 5G communication technologies with AI-based systems are ushering in a ‘smart generation’ of vehicles, drones, and even entire cities. Now, researchers take things one step further by introducing a 5G-assisted emotion detection system that uses wireless signals and body movement. In their latest publication, they outline its working principle, application prospects, and potential security threats, highlighting the need for a robust, impregnable AI algorithm to drive it.
  • MIT researchers in collaboration with surgeons at Harvard Medical School have devised a new type of amputation surgery that can help amputees better control their residual muscles and receive sensory feedback.
  • NASA released a new video showing, in real-time and full color, the entire descent and landing of the Perseverance Mars rover.
  • When a natural disaster strikes, first responders must move quickly to search for survivors. To support the search-and-rescue efforts, one group of innovators in Europe has succeeded in harnessing the power of drones, AI, and smartphones, all in one novel combination. Their idea is to use a single drone as a moving cellular base station, which can do large sweeps over disaster areas and locate survivors using signals from their phones. AI helps the drone methodically survey the area and even estimate the trajectory of survivors who are moving.
  • Army researchers recently expanded their research area for robotics to a site just north of Baltimore. Earlier this year, Army researchers performed the first fully-autonomous tests onsite using an unmanned ground vehicle test bed platform, which serves as the standard baseline configuration for multiple programmatic efforts within the laboratory. As a means to transition from simulation-based testing, the primary purpose of this test event was to capture relevant data in a live, operationally-relevant environment.
  • Partnered with MD-TEC, the new video demonstrates use of teleoperated robotic arms and virtual reality interface to perform closed suction for self-ventilating tracheostomy patients during COVID -19 outbreak. Use of closed suction is recommended to minimise aerosol generated during this procedure. This robotic method avoids staff exposure to virus to further protect NHS.
  • Since January 2020, more than 300 different robots in over 40 countries have been used to cope with some aspect of the impact of the coronavirus pandemic on society. The majority of these robots have been used to support clinical care and public safety, allowing responders to work safely and to handle the surge in infections. The new IFRR Colloquium video panel discusses how robots have been successfully used and what is needed, both in terms of fundamental research and policy, for robotics to be prepared for the future emergencies.
  • Check out robotics upcoming events. And more!

Robotics market

The global market for robots is expected to grow at a compound annual growth rate (CAGR) of around 26 percent to reach just under 210 billion U.S. dollars by 2025. It is predicted that this market will hit the 100 billion U.S. dollar mark in 2020.

Size of the global market for industrial and non-industrial robots between 2018 and 2025(in billion U.S. dollars):

Size of the global market for industrial and non-industrial robots between 2018 and 2025(in billion U.S. dollars). Source: Statista

Latest News & Researches

Electronics-free pneumatic circuits for controlling soft-legged robots

by Dylan Drotman, Saurabh Jadhav, David Sharp, Christian Chan, Michael T. Tolley in Science Robotics

Engineers at the University of California San Diego have created a four-legged soft robot that doesn’t need any electronics to work. The robot only needs a constant source of pressurized air for all its functions, including its controls and locomotion systems.

The team, led by Michael T. Tolley, a professor of mechanical engineering at the Jacobs School of Engineering at UC San Diego, details its findings in the Feb. 17, 2021 issue of the journal Science Robotics.

“This work represents a fundamental yet significant step towards fully-autonomous, electronics-free walking robots,” said Dylan Drotman, a Ph.D. student in Tolley’s research group and the paper’s first author.

Applications include low-cost robotics for entertainment, such as toys, and robots that can operate in environments where electronics cannot function, such as MRI machines or mine shafts. Soft robots are of particular interest because they easily adapt to their environment and operate safely near humans.

Most soft robots are powered by pressurized air and are controlled by electronic circuits. But this approach requires complex components like circuit boards, valves and pumps — often outside the robot’s body. These components, which constitute the robot’s brains and nervous system, are typically bulky and expensive. By contrast, the UC San Diego robot is controlled by a light-weight, low-cost system of pneumatic circuits, made up of tubes and soft valves, onboard the robot itself. The robot can walk on command or in response to signals it senses from the environment.

“With our approach, you could make a very complex robotic brain,” said Tolley, the study’s senior author. “Our focus here was to make the simplest air-powered nervous system needed to control walking.”

Soft-legged untethered quadruped robot with a bioinspired gait pattern controlled with an electronics-free pneumatic actuation system. (A to D) African sideneck turtle exhibiting a diagonal couplet walking gait. (E) Image of the untethered quadruped robot with onboard soft valves powered by a pressure-regulated CO2 canister; key components are labeled, as are the directions of leg motions for forward walking. Pneumatic oscillators are used to control the motions of each diagonal leg pair for forward walking. Each leg of the robot was 173 mm long from base to foot in its neutral state. (F to I) Sequence of images from a video of the robot walking using only the pressurized CO2 canister as a source of energy, with two pneumatic oscillator circuits generating rhythmic leg actuation. (J) Pneumatic logic circuit for rhythmic leg motion. A constant positive pressure source (P+) applied to three inverter components causes a high-pressure state to propagate around the circuit, with a delay at each inverter. While the input to one inverter is high, the attached actuator (i.e., A1, A2, or A3) is inflated. This sequence of high-pressure states causes each pair of legs of the robot to rotate in a direction determined by the pneumatic connections. (K) By reversing the sequence of activation of the pneumatic oscillator circuit, the attached actuators inflate in a new sequence (A1, A3, and A2), causing (L) the legs of the robot to rotate in reverse. (M) Schematic bottom view of the robot with the directions of leg motions indicated for forward walking.

The robot’s computational power roughly mimics mammalian reflexes that are driven by a neural response from the spine rather than the brain. The team was inspired by neural circuits found in animals, called central pattern generators, made of very simple elements that can generate rhythmic patterns to control motions like walking and running.

To mimic the generator’s functions, engineers built a system of valves that act as oscillators, controlling the order in which pressurized air enters air-powered muscles in the robot’s four limbs. Researchers built an innovative component that coordinates the robot’s gait by delaying the injection of air into the robot’s legs. The robot’s gait was inspired by sideneck turtles.

The robot is also equipped with simple mechanical sensors — little soft bubbles filled with fluid placed at the end of booms protruding from the robot’s body. When the bubbles are depressed, the fluid flips a valve in the robot that causes it to reverse direction.

The Science Robotics paper builds on previous work by other research groups that developed oscillators and sensors based on pneumatic valves, and adds the components necessary to achieve high-level functions like walking.

How it works

The robot is equipped with three valves acting as inverters that cause a high pressure state to spread around the air-powered circuit, with a delay at each inverter.

Each of the robot’s four legs has three degrees of freedom powered by three muscles. The legs are angled downward at 45 degrees and composed of three parallel, connected pneumatic cylindrical chambers with bellows. When a chamber is pressurized, the limb bends in the opposite direction. As a result, the three chambers of each limb provide multi-axis bending required for walking. Researchers paired chambers from each leg diagonally across from one another, simplifying the control problem.

A soft valve switches the direction of rotation of the limbs between counterclockwise and clockwise. That valve acts as what’s known as a latching double pole, double throw switch — a switch with two inputs and four outputs, so each input has two corresponding outputs it’s connected to. That mechanism is a little like taking two nerves and swapping their connections in the brain.

Next steps

In the future, researchers want to improve the robot’s gait so it can walk on natural terrains and uneven surfaces. This would allow the robot to navigate over a variety of obstacles. This would require a more sophisticated network of sensors and as a result a more complex pneumatic system.

The team will also look at how the technology could be used to create robots, which are in part controlled by pneumatic circuits for some functions, such as walking, while traditional electronic circuits handle higher functions.

High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities

by Wei Ren, Yan Sun, Dongliang Zhao, Ablimit Aili, Shun Zhang, Chuanqian Shi, Jialun Zhang, Huiyuan Geng, Jie Zhang, Lixia Zhang, Jianliang Xiao, Ronggui Yang in Science Advances

Researchers at the University of Colorado Boulder have developed a new, low-cost wearable device that transforms the human body into a biological battery.

The device, described today in the journal Science Advances, is stretchy enough that you can wear it like a ring, a bracelet or any other accessory that touches your skin. It also taps into a person’s natural heat — employing thermoelectric generators to convert the body’s internal temperature into electricity.

“In the future, we want to be able to power your wearable electronics without having to include a battery,” said Jianliang Xiao, senior author of the new paper and an associate professor in the Paul M. Rady Department of Mechanical Engineering at CU Boulder.

The concept may sound like something out of The Matrix film series, in which a race of robots have enslaved humans to harvest their precious organic energy. Xiao and his colleagues aren’t that ambitious: Their devices can generate about 1 volt of energy for every square centimeter of skin space — less voltage per area than what most existing batteries provide but still enough to power electronics like watches or fitness trackers.

Scientists have previously experimented with similar thermoelectric wearable devices, but Xiao’s is stretchy, can heal itself when damaged and is fully recyclable — making it a cleaner alternative to traditional electronics.

“Whenever you use a battery, you’re depleting that battery and will, eventually, need to replace it,” Xiao said. “The nice thing about our thermoelectric device is that you can wear it, and it provides you with constant power.”

Design and fabrication of the TEG. (A) Schematic illustration of the design, fabrication process, and key characteristics, including self-healability, recyclability, and Lego-like reconfigurability. Optical images of the TEG when it is flat (B), bent (C ), stretched (D), and worn on the finger (E). Photo credit: Yan Sun, University of Colorado Boulder.

High-tech bling

The project isn’t Xiao’s first attempt to meld human with robot. He and his colleagues previously experimented with designing “electronic skin,” wearable devices that look, and behave, much like real human skin. That android epidermis, however, has to be connected to an external power source to work.

Until now. The group’s latest innovation begins with a base made out of a stretchy material called polyimine. The scientists then stick a series of thin thermoelectric chips into that base, connecting them all with liquid metal wires. The final product looks like a cross between a plastic bracelet and a miniature computer motherboard or maybe a techy diamond ring.

“Our design makes the whole system stretchable without introducing much strain to the thermoelectric material, which can be really brittle,” Xiao said.

Just pretend that you’re out for a jog. As you exercise, your body heats up, and that heat will radiate out to the cool air around you. Xiao’s device captures that flow of energy rather than letting it go to waste.

“The thermoelectric generators are in close contact with the human body, and they can use the heat that would normally be dissipated into the environment,” he said.

Lego blocks

He added that you can easily boost that power by adding in more blocks of generators. In that sense, he compares his design to a popular children’s toy.

“What I can do is combine these smaller units to get a bigger unit,” he said. “It’s like putting together a bunch of small Lego pieces to make a large structure. It gives you a lot of options for customization.”

Xiao and his colleagues calculated, for example, that a person taking a brisk walk could use a device the size of a typical sports wristband to generate about 5 volts of electricity — which is more than what many watch batteries can muster.

Like Xiao’s electronic skin, the new devices are as resilient as biological tissue. If your device tears, for example, you can pinch together the broken ends, and they’ll seal back up in just a few minutes. And when you’re done with the device, you can dunk it into a special solution that will separate out the electronic components and dissolve the polyimine base — each and every one of those ingredients can then be reused.

“We’re trying to make our devices as cheap and reliable as possible, while also having as close to zero impact on the environment as possible,” Xiao said.

While there are still kinks to work out in the design, he thinks that his group’s devices could appear on the market in five to 10 years. Just don’t tell the robots. We don’t want them getting any ideas.

Research Challenges and Security Threats to AI-Driven 5G Virtual Emotion Applications Using Autonomous Vehicles, Drones, and Smart Devices

by Hyunbum Kim, Jalel Ben-Othman, Lynda Mokdad, Junggab Son, Chunguo Li in IEEE Network

With the advent of 5G communication technology and its integration with AI, we are looking at the dawn of a new era in which people, machines, objects, and devices are connected like never before. This smart era will be characterized by smart facilities and services such as self-driving cars, smart UAVs, and intelligent healthcare. This will be the aftermath of a technological revolution.

But the flip side of such technological revolution is that AI itself can be used to attack or threaten the security of 5G-enabled systems which, in turn, can greatly compromise their reliability. It is, therefore, imperative to investigate such potential security threats and explore countermeasures before a smart world is realized.

In a recent study published in IEEE Network, a team of researchers led by Prof. Hyunbum Kim from Incheon National University, Korea, address such issues in relation to an AI-based, 5G-integrated virtual emotion recognition system called 5G-I-VEmoSYS, which detects human emotions using wireless signals and body movement. “Emotions are a critical characteristic of human beings and separates humans from machines, defining daily human activity. However, some emotions can also disrupt the normal functioning of a society and put people’s lives in danger, such as those of an unstable driver. Emotion detection technology thus has great potential for recognizing any disruptive emotion and in tandem with 5G and beyond-5G communication, warning others of potential dangers,” explains Prof. Kim. “For instance, in the case of the unstable driver, the AI enabled driver system of the car can inform the nearest network towers, from where nearby pedestrians can be informed via their personal smart devices.”

The virtual emotion system developed by Prof. Kim’s team, 5G-I-VEmoSYS, can recognize at least five kinds of emotion (joy, pleasure, a neutral state, sadness, and anger) and is composed of three subsystems dealing with the detection, flow, and mapping of human emotions. The system concerned with detection is called Artificial Intelligence-Virtual Emotion Barrier, or AI-VEmoBAR, which relies on the reflection of wireless signals from a human subject to detect emotions. This emotion information is then handled by the system concerned with flow, called Artificial Intelligence-Virtual Emotion Flow, or AI-VEmoFLOW, which enables the flow of specific emotion information at a specific time to a specific area. Finally, the Artificial Intelligence-Virtual Emotion Map, or AI-VEmoMAP, utilizes a large amount of this virtual emotion data to create a virtual emotion map that can be utilized for threat detection and crime prevention.

A notable advantage of 5G-I-VEmoSYS is that it allows emotion detection without revealing the face or other private parts of the subjects, thereby protecting the privacy of citizens in public areas. Moreover, in private areas, it gives the user the choice to remain anonymous while providing information to the system. Furthermore, when a serious emotion, such as anger or fear, is detected in a public area, the information is rapidly conveyed to the nearest police department or relevant entities who can then take steps to prevent any potential crime or terrorism threats.

However, the system suffers from serious security issues such as the possibility of illegal signal tampering, abuse of anonymity, and hacking-related cyber-security threats. Further, the danger of sending false alarms to authorities remains.

While these concerns do put the system’s reliability at stake, Prof. Kim’s team are confident that they can be countered with further research. “This is only an initial study. In the future, we need to achieve rigorous information integrity and accordingly devise robust AI-based algorithms that can detect compromised or malfunctioning devices and offer protection against potential system hacks,” explains Prof. Kim, “Only then will it enable people to have safer and more convenient lives in the advanced smart cities of the future.”

New surgery may enable better control of prosthetic limbs

Reconnecting muscle pairs during amputation gives patients more sensory feedback from the limb

MIT researchers in collaboration with surgeons at Harvard Medical School have devised a new type of amputation surgery that can help amputees better control their residual muscles and receive sensory feedback.

In most amputations, muscle pairs that control the affected joints, such as elbows or ankles, are severed. However, the MIT team has found that reconnecting these muscle pairs, allowing them to retain their normal push-pull relationship, offers people much better sensory feedback.

“Both our study and previous studies show that the better patients can dynamically move their muscles, the more control they’re going to have. The better a person can actuate muscles that move their phantom ankle, for example, the better they’re actually able to use their prostheses,” says Shriya Srinivasan, an MIT postdoc and lead author of the study.

In a study that will appear this week in the Proceedings of the National Academy of Sciences, 15 patients who received this new type of surgery, known as agonist-antagonist myoneural interface (AMI), could control their muscles more precisely than patients with traditional amputations. The AMI patients also reported feeling more freedom of movement and less pain in their affected limb.

“Through surgical and regenerative techniques that restore natural agonist-antagonist muscle movements, our study shows that persons with an AMI amputation experience a greater phantom joint range of motion, a reduced level of pain, and an increased fidelity of prosthetic limb controllability,” says Hugh Herr, a professor of media arts and sciences, head of the Biomechatronics group in the Media Lab, and the senior author of the paper.

Restoring sensation

Most muscles that control limb movement occur in pairs that alternately stretch and contract. One example of these agonist-antagonist pairs is the biceps and triceps. When you bend your elbow, the biceps muscle contracts, causing the triceps to stretch, and that stretch sends sensory information back to the brain.

During a conventional limb amputation, these muscle movements are restricted, cutting off this sensory feedback and making it much harder for amputees to feel where their prosthetic limbs are in space or to sense forces applied to those limbs.

“When one muscle contracts, the other one doesn’t have its antagonist activity, so the brain gets confusing signals,” says Srinivasan, a former member of the Biomechatronics group now working at MIT’s Koch Institute for Integrative Cancer Research. “Even with state-of-the-art prostheses, people are constantly visually following the prosthesis to try to calibrate their brains to where the device is moving.”

A few years ago, the MIT Biomechatronics group invented and scientifically developed in preclinical studies a new amputation technique that maintains the relationships between those muscle pairs. Instead of severing each muscle, they connect the two ends of the muscles so that they still dynamically communicate with each other within the residual limb. In a 2017 study of rats, they showed that when the animals contracted one muscle of the pair, the other muscle would stretch and send sensory information back to the brain.

Since these preclinical studies, about 25 people have undergone the AMI procedure at Brigham and Women’s Hospital, performed by Dr. Matthew Carty, a surgeon in the Division of Plastic and Reconstructive Surgery at Brigham and Women’s Hospital. In the new PNAS study, the researchers measured the precision of muscle movements in the ankle and subtalar joints of 15 patients who had AMI amputations performed below the knee. These patients had two sets of muscles reconnected during their amputation: the muscles that control the ankle, and those that control the subtalar joint, which allows the sole of the foot to tilt inward or outward. The study compared these patients to seven people who had traditional amputations below the knee.

Each patient was evaluated while lying down with their legs propped on a foam pillow, allowing their feet to extend into the air. Patients did not wear prosthetic limbs during the study. The researchers asked them to flex their ankle joints — both the intact one and the “phantom” one — by 25, 50, 75, or 100 percent of their full range of motion. Electrodes attached to each leg allowed the researchers to measure the activity of specific muscles as each movement was performed repeatedly.

The researchers compared the electrical signals coming from the muscles in the amputated limb with those from the intact limb and found that for AMI patients, they were very similar. They also found that patients with the AMI amputation were able to control the muscles of their amputated limb much more precisely than the patients with traditional amputations. Patients with traditional amputations were more likely to perform the same movement over and over in their amputated limb, regardless of how far they were asked to flex their ankle.

“The AMI patients’ ability to control these muscles was a lot more intuitive than those with typical amputations, which largely had to do with the way their brain was processing how the phantom limb was moving,” Srinivasan says.

In a paper that recently appeared in Science Translational Medicine, the researchers reported that brain scans of the AMI amputees showed that they were getting more sensory feedback from their residual muscles than patients with traditional amputations. In work that is now ongoing, the researchers are measuring whether this ability translates to better control of a prosthetic leg while walking.

Freedom of movement

The researchers also discovered an effect they did not anticipate: AMI patients reported much less pain and a greater sensation of freedom of movement in their amputated limbs.

“Our study wasn’t specifically designed to achieve this, but it was a sentiment our subjects expressed over and over again. They had a much greater sensation of what their foot actually felt like and how it was moving in space,” Srinivasan says. “It became increasingly apparent that restoring the muscles to their normal physiology had benefits not only for prosthetic control, but also for their day-to-day mental well-being.”

The research team has also developed a modified version of the surgery that can be performed on people who have already had a traditional amputation. This process, which they call “regenerative AMI,” involves grafting small muscle segments to serve as the agonist and antagonist muscles for an amputated joint. They are also working on developing the AMI procedure for other types of amputations, including above the knee and above and below the elbow.

“We’re learning that this technique of rewiring the limb, and using spare parts to reconstruct that limb, is working, and it’s applicable to various parts of the body,” Herr says.

SARDO: An Automated Search-and-Rescue Drone-based Solution for Victims Localization

by Antonio Albanese; Vincenzo Sciancalepore; Xavier Costa-Perez

When a natural disaster strikes, first responders must move quickly to search for survivors. To support the search-and-rescue efforts, one group of innovators in Europe has succeeded in harnessing the power of drones, AI, and smartphones, all in one novel combination. Their idea is to use a single drone as a moving cellular base station, which can do large sweeps over disaster areas and locate survivors using signals from their phones. AI helps the drone methodically survey the area and even estimate the trajectory of survivors who are moving.

The team built its platform, called Search-And-Rescue DrOne based solution (SARDO), using off-the-shelf hardware and tested it in field experiments and simulations.

“We built SARDO to provide first responders with an all-in-one victims localization system capable of working in the aftermath of a disaster without existing network infrastructure support,” explains Antonio Albanese, a Research Associate at NEC Laboratories Europe GmbH, which is headquartered in Heidelberg, Germany.

The point is that a natural disaster may knock out cell towers along with other infrastructure. SARDO, which is quipped with a light-weight cellular base station, is a mobile solution that could be implemented regardless of what infrastructure remains after a natural disaster.

To detect and map out the locations of victims, SARDO performs time-of-flight measurements (using the timing of signals emitted by the users’ phones to estimate distance).

A machine learning algorithm is then applied to the time-of-flight measurements to calculate the positions of victims. The algorithm compensates for when signals are blocked by rubble.

If a victim is on the move in the wake of a disaster, a second machine learning algorithm, tasked with estimating the person’s trajectory based on their current movement, kicks in — potentially helping first responders locate the person sooner.

After sweeping an area, the drone is programmed to automatically maneuver closer to the position of a suspected victim to retrieve more accurate distance measurements. If too many errors are interfering with the drone’s ability to locate victims, it’s programmed to enlarge the scanning area.

In their study, Albanese and his colleagues tested SARDO in several field experiments without rubble, and used simulations to test the approach in a scenario where rubble interfered with some signals. In the field experiments, the drone was able to pinpoint the location of missing people to within a few tens of meters, requiring approximately three minutes to locate each victim (within a field roughly 200 meters squared. As would be expected, SARDO was less accurate when rubble was present or when the drone was flying at higher speeds or altitudes.

Albanese notes that a limitation of SARDO–as is the case with all drone-based approaches–is the battery life of the drone. But, he says, the energy consumption of the NEC team’s design remains relatively low.

The group is consulting the laboratory’s business experts on the possibility of commercializing this tech. Says Albanese: “There is interest, especially from the public safety divisions, but still no final decision has been taken.”

In the meantime, SARDO may undergo further advances. “We plan to extend SARDO to emergency indoor localization so [it is] capable of working in any emergency scenario where buildings might not be accessible [to human rescuers],” says Albanese.

Videos

NASA released a new video showing, in real-time and full color, the entire descent and landing of the Perseverance Mars rover.

Partnered with MD-TEC, this video demonstrates use of teleoperated robotic arms and virtual reality interface to perform closed suction for self-ventilating tracheostomy patients during COVID -19 outbreak. Use of closed suction is recommended to minimise aerosol generated during this procedure. This robotic method avoids staff exposure to virus to further protect NHS.

Since January 2020, more than 300 different robots in over 40 countries have been used to cope with some aspect of the impact of the coronavirus pandemic on society. The majority of these robots have been used to support clinical care and public safety, allowing responders to work safely and to handle the surge in infections. The new IFRR Colloquium video panel discusses how robots have been successfully used and what is needed, both in terms of fundamental research and policy, for robotics to be prepared for the future emergencies.

Army researchers recently expanded their research area for robotics to a site just north of Baltimore. Earlier this year, Army researchers performed the first fully-autonomous tests onsite using an unmanned ground vehicle test bed platform, which serves as the standard baseline configuration for multiple programmatic efforts within the laboratory. As a means to transition from simulation-based testing, the primary purpose of this test event was to capture relevant data in a live, operationally-relevant environment.

An inchworm-inspired crawling robot (iCrawl) is a 5 DOF robot with two legs; each with an electromagnetic foot to crawl on the metal pipe surfaces. The robot uses a passive foot-cap underneath an electromagnetic foot, enabling it to be a versatile pipe-crawler. The robot has the ability to crawl on the metal pipes of various curvatures in horizontal and vertical directions. The robot can be used as a new robotic solution to assist close inspection outside the pipelines, thus minimizing downtime in the oil and gas industry.

Unitree dressed up a whole bunch of Laikago quadrupeds to take part in the 2021 Spring Festival Gala in China.

Marine iguanas compete for the best nesting sites on the Galapagos Islands. Meanwhile RoboSpy Iguana gets involved in a snot sneezing competition after the marine iguanas return from the sea.

Upcoming events

HRI 2021 — March 8–11, 2021 — [Online Conference]
RoboSoft 2021 — April 12–16, 2021 — [Online Conference]
ICRA 2021 — May 30–5, 2021 — Xi’an, China

MISC

Subscribe to Paradigm!

Medium. Twitter. Telegram. Telegram Chat. Reddit. LinkedIn.

Main sources

Research articles

Science Robotics

Science Daily

IEEE Spectrum

--

--

Paradigm is an ecosystem that incorporates a venture fund, a research agency and an accelerator focused on crypto, DLT, neuroscience, space technologies, robotics, and biometrics — technologies that combined together will alter how we perceive reality.

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store