ST/ Evidence that Venus is volcanically active

Paradigm
Paradigm
Published in
33 min readMar 30, 2023

Space biweekly vol.73, 10th March — 30th March

TL;DR

  • Venus appears to have volcanic activity, according to a new research paper that offers strong evidence to answer the lingering question about whether Earth’s sister planet currently has eruptions and lava flows.
  • In a new study, astronomers describe how extraterrestrial life has the potential to exist on distant exoplanets inside a special area called the ‘terminator zone,’ which is a ring on planets that have one side that always faces its star and one side that is always dark.
  • The largest data release of relatively nearby supernovae (colossal explosions of stars), containing three years of data is publicly available via the Young Supernova Experiment (YSE).
  • As almost 200 countries agree a legally-binding treaty to protect the High Seas, a collaboration of experts in ocean plastic pollution and satellite technology has urged world leaders to learn lessons from the management of the High Seas and act now to protect Earth’s orbit.
  • While analyzing data from the first images of a well-known early galaxy taken by NASA’s James Webb Space Telescope (JWST), astronomers discovered a companion galaxy previously hidden behind the light of the foreground galaxy — one that surprisingly seems to have already hosted multiple generations of stars despite its young age, estimated at 1.4 billion years old.
  • Six massive galaxies discovered in the early universe are upending what scientists previously understood about the origins of galaxies in the universe.
  • Astronomers and amateurs alike know the bigger the telescope, the more powerful the imaging capability. To keep the power but streamline one of the bulkier components, a research team created the first ultrathin, compact metalens telescope capable of imaging far-away objects, including the moon.
  • Researchers have mapped the sparse life hidden away in salt domes, rocks and crystals at Salar de Pajonales at the boundary of the Chilean Atacama Desert and Altiplano. Then they trained a machine learning model to recognize the patterns and rules associated with their distributions so it could learn to predict and find those same distributions in data on which it was not trained. In this case, by combining statistical ecology with AI/ML, the scientists could locate and detect biosignatures up to 87.5 percent of the time and decrease the area needed for search by up to 97 percent.
  • Space travel has always tested the human body by the effects of the new conditions of altered gravity on biological systems. It has long been known that continuous exposure to microgravity conditions human physiology and causes effects that compromise muscular, sensory, endocrine and cardiovascular functions. But is it also risky to be exposed to altered gravity for short periods of time?
  • Scientists identified about 140,000 molecular clouds in the Milky Way Galaxy from large-scale data of carbon monoxide molecules, observed in detail by the Nobeyama 45-m radio telescope. Using artificial intelligence, the researchers estimated the distance of each of these molecular clouds to determine their size and mass, successfully mapping the distribution of the molecular clouds in the Galaxy in the most detailed manner to date.
  • And more!

Space industry in numbers

The global smart space market size is projected to grow from USD 9.4 billion in 2020 to USD 15.3 billion by 2025, at a Compound Annual Growth Rate (CAGR) of 10.2% during the forecast period. The increasing venture capital funding and growing investments in smart space technology to drive market growth.

Analysts at Morgan Stanley and Goldman Sachs have predicted that economic activity in space will become a multi-trillion-dollar market in the coming decades. Morgan Stanley’s Space Team estimates that the roughly USD 350 billion global space industry could surge to over USD 1 trillion by 2040.

Source: Satellite Industry Association, Morgan Stanley Research, Thomson Reuters. *2040 estimates

Space industry news

Latest research

Surface changes observed on a Venusian volcano during the Magellan mission

by Robert R. Herrick, Scott Hensley in Science

Venus appears to have volcanic activity, according to a new research paper that offers strong evidence to answer the lingering question about whether Earth’s sister planet currently has eruptions and lava flows.

Venus, although similar to Earth in size and mass, differs markedly in that it does not have plate tectonics. The boundaries of Earth’s moving surface plates are the primary locations of volcanic activity. New research by University of Alaska Fairbanks Geophysical Institute research professor Robert Herrick revealed a nearly 1-square-mile volcanic vent that changed in shape and grew over eight months in 1991. Changes on such a scale on Earth are associated with volcanic activity, whether through an eruption at the vent or movement of magma beneath the vent that causes the vent walls to collapse and the vent to expand.

Herrick studied images taken in the early 1990s during the first two imaging cycles of NASA’s Magellan space probe. Until recently, comparing digital images to find new lava flows took too much time, the paper notes. As a result, few scientists have searched Magellan data for feature formation.

Topography and SAR image of the Study area on Venus.

“It is really only in the last decade or so that the Magellan data has been available at full resolution, mosaicked and easily manipulable by an investigator with a typical personal workstation,” Herrick said.

The new research focused on an area containing two of Venus’ largest volcanoes, Ozza and Maat Mons.

“Ozza and Maat Mons are comparable in volume to Earth’s largest volcanoes but have lower slopes and thus are more spread out,” Herrick said.

Maat Mons contains the expanded vent that indicates volcanic activity. Herrick compared a Magellan image from mid-February 1991 with a mid-October 1991 image and noticed a change to a vent on the north side of a domed shield volcano that is part of the Maat Mons volcano. The vent had grown from a circular formation of just under 1 square mile to an irregular shape of about 1.5 square miles.

The later image indicates that the vent’s walls became shorter, perhaps only a few hundred feet high, and that the vent was nearly filled to its rim. The researchers speculate that a lava lake formed in the vent during the eight months between the images, though whether the contents were liquid or cooled and solidified isn’t known.

Radar images of a vent which has changed shape.

The researchers offer one caveat: a nonvolcanic, earthquake-triggered collapse of the vent’s walls might have caused the expansion. They note, however, that vent collapses of this scale on Earth’s volcanoes have always been accompanied by nearby volcanic eruptions; magma withdraws from beneath the vent because it is going somewhere else. The surface of Venus is geologically young, especially compared to all the other rocky bodies except Earth and Jupiter’s moon Io, Herrick said.

“However, the estimates of how often eruptions might occur on Venus have been speculative, ranging from several large eruptions per year to one such eruption every several or even tens of years,” he said.

Herrick contrasts the lack of information about Venusian volcanism with what is known about Jupiter’s moon Io and about Mars.

“Io is so active that multiple ongoing eruptions have been imaged every time we’ve observed it,” he said.

On a geological time scale, relatively young lava flows indicate Mars remains volcanically active, Herrick said.

“However, nothing has occurred in the 45 years that we have been observing Mars, and most scientists would say that you’d probably need to watch the surface for a few million years to have a reasonable chance of seeing a new lava flow,” he said.

Herrick’s research adds Venus to the small pool of volcanically active bodies in our solar system.

“We can now say that Venus is presently volcanically active in the sense that there are at least a few eruptions per year,” he said. “We can expect that the upcoming Venus missions will observe new volcanic flows that have occurred since the Magellan mission ended three decades ago, and we should see some activity occurring while the two upcoming orbital missions are collecting images.”

Terminator Habitability: The Case for Limited Water Availability on M-dwarf Planets

by Ana H. Lobo, Aomawa L. Shields, Igor Z. Palubski, Eric Wolf in The Astrophysical Journal

In a new study, University of California, Irvine astronomers describe how extraterrestrial life has the potential to exist on distant exoplanets inside a special area called the “terminator zone,” which is a ring on planets that have one side that always faces its star and one side that is always dark.

“These planets have a permanent day side and a permanent night side,” said Ana Lobo, a postdoctoral researcher in the UCI Department of Physics & Astronomy who led the new work. Lobo added that such planets are particularly common because they exist around stars that make up about 70 percent of the stars seen in the night sky — so-called M-dwarf stars, which are relatively dimmer than our sun.

The terminator is the dividing line between the day and night sides of the planet. Terminator zones could exist in that “just right” temperature zone between too hot and too cold.

“You want a planet that’s in the sweet spot of just the right temperature for having liquid water,” said Lobo, because liquid water, as far as scientists know, is an essential ingredient for life.

On the dark sides of terminator planets, perpetual night would yield plummeting temperatures that could cause any water to be frozen in ice. The side of the planet always facing its star could be too hot for water to remain in the open for long.

“This is a planet where the dayside can be scorching hot, well beyond habitability, and the night side is going to be freezing, potentially covered in ice. You could have large glaciers on the night side,” Lobo said.

Stellar spectra for AD Leonis (red), HD22049, a K star (orange), and the Sun (yellow). The blue lines show the water absorption values using the Lorentz profile, from the HITRAN database.

Lobo, alongside Aomawa Shields, UCI associate professor of physics & astronomy, modeled the climate of terminator planets using software typically used to model our own planet’s climate, but with a few adjustments, including slowing down planetary rotation.

It’s believed to be the first time astronomers have been able to show that such planets can sustain habitable climates confined to this terminator region. Historically, researchers have mostly studied ocean-covered exoplanets in their search for candidates for habitability. But now that Lobo and her team have shown that terminator planets are also viable refuges for life, it increases the options life-hunting astronomers have to choose from.

“We are trying to draw attention to more water-limited planets, which despite not having widespread oceans, could have lakes or other smaller bodies of liquid water, and these climates could actually be very promising,” Lobo said.

One key to the finding, Lobo added, was pinpointing exactly what kind of terminator zone planet can retain liquid water. If the planet is mostly covered in water, then the water facing the star, the team found, would likely evaporate and cover the entire planet in a thick layer of vapor. But if there’s land, this effect shouldn’t occur.

“Ana has shown if there’s a lot of land on the planet, the scenario we call ‘terminator habitability’ can exist a lot more easily,” said Shields. “These new and exotic habitability states our team is uncovering are no longer the stuff of science fiction — Ana has done the work to show that such states can be climatically stable.”

Recognizing terminator zones as potential harbors for life also means that astronomers will need to adjust the way they study exoplanet climates for signs of life, because the biosignatures life creates may only be present in specific parts of the planet’s atmosphere. The work will also help inform future efforts by teams using telescopes like the James Webb Space Telescope or the Large Ultraviolet Optical Infrared Surveyor telescope currently in development at NASA as they search for planets that may host extraterrestrial life.

“By exploring these exotic climate states, we increase our chances of finding and properly identifying a habitable planet in the near future,” said Lobo.

The Young Supernova Experiment Data Release 1 (YSE DR1): Light Curves and Photometric Classification of 1975 Supernovae

by P. D. Aleo, K. Malanchev, S. Sharief, D. O. Jones, et al in The Astrophysical Journal Supplement Series

Celestial phenomena that change with time such as exploding stars, mysterious objects that suddenly brighten and variable stars are a new frontier in astronomical research, with telescopes that can rapidly survey the sky revealing thousands of these objects.

The largest data release of relatively nearby supernovae (colossal explosions of stars), containing three years of data from the University of Hawaiʻi Institute for Astronomy’s (IfA) Pan-STARRS telescope atop Haleakalā on Maui, is publicly available via the Young Supernova Experiment (YSE). The project, which began in 2019, surveyed more than 1,500 square degrees of sky every three days, and discovered thousands of new cosmic explosions and other astrophysical transients, dozens of them just days or hours after exploding.

The newly-released data contains information on nearly 2,000 supernovae and other luminous variable objects with observations in multiple colors. It is also the first to extensively use the multi-color imaging to classify the supernovae and estimate their distances.

Astrophysicists use large imaging surveys — systematic studies of large areas of the sky over time — and different parts of the electromagnetic spectrum for many scientific goals. Some are used to study distant galaxies and how they evolve over cosmic time, or look at specific regions of the sky that are especially important, such as the Andromeda Galaxy.

“Pan-STARRS produces a steady stream of transient discoveries, observing large areas of the sky every clear night with two telescopes,” said Mark Huber, a senior researcher at IfA. “With over a decade of observations, Pan-STARRS operates one of the best calibrated systems in astronomy, with a detailed reference image of the static sky visible from Haleakalā. This enables rapid discovery and follow-up of supernovae and other transient events, well suited for programs like YSE to build up the sample required for analysis and this significant data release.”

YSE is designed to find energetic astrophysical “transient” sources such as supernovae, tidal disruption events and kilonovae (extremely energetic explosions). These transients evolve quickly, rising to their maximum brightness and then fading away after a few days or months.

An equatorial skymap of all 1975 YSE DR1 transients as of 2021 December 20, each marked as a circle with its color denoting the classication (spectroscopic or photometric).

The images from Pan-STARRS are transferred to UH’s Information Technology Center for initial processing and scientific calibration by the Pan-STARRS Image Processing Pipeline. Higher-level processing, detailed analysis and storage was then performed using computing systems at the National Center for Supercomputing Applications’ (NCSA) Center for Astrophysical Surveys (CAPS), the University of California, Santa Cruz (UCSC), and the Dark Cosmology Centre (DARK) at the Niels Bohr Institute at the University of Copenhagen.

The survey and the tools used to analyze the data are critical precursors to the upcoming Vera C. Rubin Observatory Legacy Survey of Space and Time, a new 8.4-meter telescope being built in Chile. Rubin Observatory will survey the entire sky every three nights, discovering so many variable and exploding objects that it will be impossible to obtain detailed follow-up observations. The ability to classify these objects from the survey data alone will be vital to choosing the most interesting ones for astronomers to target with other telescopes. Gautham Narayan, deputy director of CAPS, is leading the cosmological analysis for the data sample and former CAPS graduate fellow Patrick Aleo is lead author of the paper.

“Much of the time-domain universe is uncharted. We still do not know the progenitor systems of many of the most common classes of transients, such as type Ia supernovae, while still using these sources to try and understand the expansion history of our universe,” Narayan said. “We’ve also seen one electromagnetic counterpart to a binary neutron star merger. There are many kinds of transients that are theoretically predicted, but have never been seen at all.”

Ken Chambers, Pan-STARRS director, added that “this collaboration with the Young Supernova Experiment makes exceptional use of Pan-STARRS’ ability to routinely survey the sky for transient phenomena and moving objects. We have provided an unprecedented sample of young supernovae discovered before their peak luminosity that will be an important resource for supernova researchers and cosmologists for many years. Looking ahead, Pan-STARRS will remain a crucial resource in the Northern Hemisphere to complement the Rubin Observatory in the Southern Hemisphere.”

Protect Earth’s orbit: Avoid high seas mistakes

by Imogen E. Napper, Alasdair J. Davies, Moriba Jah, Kimberley R. Miner, Richard C. Thompson, Melissa Quinn, Heather J. Koldewey in Science

Scientists have called for a legally-binding treaty to ensure Earth’s orbit isn’t irreparably harmed by the future expansion of the global space industry.

In the week that nearly 200 countries agreed to a treaty to protect the High Seas after a 20-year process, the experts believe society needs to take the lessons learned from one part of our planet to another. The number of satellites in orbit is expected to increase from 9,000 today to over 60,000 by 2030, with estimates suggesting there are already more than 100 trillion untracked pieces of old satellites circling the planet. While such technology is used to provide a huge range of social and environmental benefits, there are fears the predicted growth of the industry could make large parts of Earth’s orbit unusable.

An international collaboration of experts in fields including satellite technology and ocean plastic pollution say this demonstrates the urgent need for global consensus on how best to govern Earth’s orbit. They acknowledge that a number of industries and countries are starting to focus on satellite sustainability, but say this should be enforced to include any nation with plans to use Earth’s orbit.

Any agreement, they add, should include measures to implement producer and user responsibility for satellites and debris, from the time they launch onwards. Commercial costs should also be considered when looking at ways to incentivise accountability. Such considerations are consistent with current proposals to address ocean plastic pollution as countries begin negotiations for the Global Plastics Treaty.

The experts also believe that unless action is taken immediately, large parts of our planet’s immediate surroundings risk the same fate as the High Seas where insubstantial governance has led to overfishing, habitat destruction, deep-sea mining exploration, and plastic pollution. The article was co-authored by researchers from the University of Plymouth, Arribada Initiative, The University of Texas at Austin, California Institute of Technology, NASA Jet Propulsion Laboratory, Spaceport Cornwall, and ZSL (Zoological Society of London). They include the academic who led the first ever study into marine microplastics, also published in Science almost 20 years ago, and scientists who contributed to the commitment to develop a Global Plastics Treaty signed by 170 world leaders at the United Nations Environment Assembly in March 2022.

Dr Imogen Napper, Research Fellow at the University of Plymouth, led the newly-published study with funding from the National Geographical Society. She said: “The issue of plastic pollution, and many of the other challenges facing our ocean, is now attracting global attention. However, there has been limited collaborative action and implementation has been slow. Now we are in a similar situation with the accumulation of space debris. Taking into consideration what we have learnt from the high seas, we can avoid making the same mistakes and work collectively to prevent a tragedy of the commons in space. Without a global agreement we could find ourselves on a similar path.”

Heather Koldewey, ZSL’s Senior Marine Technical Advisor, said: “To tackle planetary problems, we need to bring together scientists from across disciplines to identify and accelerate solutions. As a marine biologist I never imagined writing a paper on space, but through this collaborative research identified so many parallels with the challenges of tackling environmental issues in the ocean. We just need to get better at the uptake of science into management and policy.”

Dr Moriba Jah, Associate Professor of Aerospace Engineering and Engineering Mechanics at The University of Texas at Austin, said: “Ancient TEK (traditional ecological knowledge) informs us how we must embrace stewardship because our lives depend on it. I’m excited to work with others in highlighting the links and interconnectedness amongst all things and that marine debris and space debris are both an anthropogenic detriment that is avoidable.”

Dr Kimberley Miner, Scientist at the NASA Jet Propulsion Laboratory, said: “Mirroring the new UN ocean initiative, minimizing the pollution of the lower Earth orbit will allow continued space exploration, satellite continuity, and the growth of life-changing space technology.”

Melissa Quinn, Head of Spaceport Cornwall, said: “Satellites are vital to the health of our people, economies, security and Earth itself. However, using space to benefit people and planet is at risk. By comparing how we have treated our seas, we can be proactive before we damage the use of space for future generations. Humanity needs to take responsibility for our behaviours in space now, not later. I encourage all leaders to take note, to recognise the significance of this next step and to become jointly accountable.”

Professor Richard Thompson OBE, Head of the International Marine Litter Research Unit at the University of Plymouth, said: “I have spent most of my career working on the accumulation of plastic litter in the marine environment; the harm it can bring and the potential solutions. It is very clear that much of the pollution we see today could have been avoided. We were well aware of the issue of plastic pollution a decade ago, and had we acted then the quantity of plastic in our oceans might be half of what it is today. Going forward we need to take a much more proactive stance to help safeguard the future of our planet. There is much that can be learned from mistakes made in our oceans that is relevance to the accumulation of debris in space.”

Discovery of a Dusty, Chemically Mature Companion to a z ∼ 4 Starburst Galaxy in JWST ERS Data

by Bo Peng, Amit Vishwas, Gordon Stacey, Thomas Nikola, Cody Lamarche, Christopher Rooney, Catie Ball, Carl Ferkinhoff, Henrik Spoon in The Astrophysical Journal Letters

While analyzing data from the first images of a well-known early galaxy taken by NASA’s James Webb Space Telescope (JWST), Cornell University astronomers discovered a companion galaxy previously hidden behind the light of the foreground galaxy — one that surprisingly seems to have already hosted multiple generations of stars despite its young age, estimated at 1.4 billion years old.

“We found this galaxy to be super-chemically abundant, something none of us expected,” said Bo Peng, a doctoral student in astronomy, who led the data analysis. “JWST changes the way we view this system and opens up new venues to study how stars and galaxies formed in the early universe.” Peng is the lead author.

Earlier images captured by the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile contained hints of the companion resolved clearly by JSWT, but couldn’t be interpreted as anything more than random noise, said Amit Vishwas, a research associate at the Cornell Center for Astrophysics and Planetary Sciences (CCAPS) and the paper’s second author.

The team estimated the companion galaxy, which they labeled SPT0418-SE, was within 5 kiloparsecs of SPT0418–47, one of the brightest dusty, star-forming galaxies in the early universe, its distant light bent and magnified by a foreground galaxy’s gravity into a circle, called an Einstein ring. The Magellanic Clouds, satellites of the Milky Way are about 50 kiloparsecs away. The proximity suggests these galaxies are bound to interact with each other and potentially even merge, an observation that adds to the understanding of how early galaxies may have evolved into larger ones.

Left: Hα pseudo-narrowband image of the SPT0418 system, averaged over the channels including the Hα emission in the original spectral cube. The strongly lensed ring and the two newly discovered sources (SE-1 and SE-2) are highlighted by a red annulus and gray and black ellipses, marked as “A,” “B,” and “C,” respectively. The lensing galaxy is shown as the central bright source. The 835 μm continuum is plotted as the thin black contours, with the levels 2, 4, 8, 16, 32 × σ where σ = 56.7 μJy beam −1. Right: the spectra of the three sources integrated over the regions highlighted in the left panel, using the same color scheme. The spectrum for the ring is scaled by a factor of 0.1 for clarity. The small black bar below the Hα line marks the wavelength coverage of the pseudo-narrowband image. The potentially detected lines are marked by vertical dotted lines.

The two galaxies are modest in mass as galaxies in the early universe go, with “SE” relatively smaller and less dusty, making it appear bluer than the extremely dust-obscured ring. Based on images of nearby galaxies with similar colors, the researchers suggest that they may reside “in a massive dark-matter halo with yet-to-be-discovered neighbors.”

Most surprising about the companion galaxy, considering its age and mass, was its mature metallicity — amounts of elements heavier than helium and hydrogen, such as carbon, oxygen and nitrogen. The team estimated that as comparable to our sun, which is more than 4 billion years old and inherited most of its metals from previous generations of stars that had 8 billion years to build them up.

“We are seeing the leftovers of at least a couple of generations of stars having lived and died within the first billion years of the universe’s existence, which is not what we typically see,” Vishwas said. “We speculate that the process of forming stars in these galaxies must have been very efficient and started very early in the universe, particularly to explain the measured abundance of nitrogen relative to oxygen, as this ratio is a reliable measure of how many generations of stars have lived and died.”

A population of red candidate massive galaxies ~600 Myr after the Big Bang

by Ivo Labbé, Pieter van Dokkum, Erica Nelson, Rachel Bezanson, Katherine A. Suess, Joel Leja, Gabriel Brammer, Katherine Whitaker, Elijah Mathews, Mauro Stefanon, Bingjie Wang in Nature

Six massive galaxies discovered in the early universe are upending what scientists previously understood about the origins of galaxies in the universe.

“These objects are way more massive? than anyone expected,” said Joel Leja, assistant professor of astronomy and astrophysics at Penn State, who modeled light from these galaxies. “We expected only to find tiny, young, baby galaxies at this point in time, but we’ve discovered galaxies as mature as our own in what was previously understood to be the dawn of the universe.”

Using the first dataset released from NASA’s James Webb Space Telescope, the international team of scientists discovered objects as mature as the Milky Way when the universe was only 3% of its current age, about 500–700 million years after the Big Bang. The telescope is equipped with infrared-sensing instruments capable of detecting light that was emitted by the most ancient stars and galaxies. Essentially, the telescope allows scientists to see back in time roughly 13.5 billion years, near the beginning of the universe as we know it, Leja explained.

“This is our first glimpse back this far, so it’s important that we keep an open mind about what we are seeing,” Leja said. “While the data indicates they are likely galaxies, I think there is a real possibility that a few of these objects turn out to be obscured supermassive black holes. Regardless, the amount of mass we discovered means that the known mass in stars at this period of our universe is up to 100 times greater than we had previously thought. Even if we cut the sample in half, this is still an astounding change.”

In a paper, the researchers show evidence that the six galaxies are far more massive than anyone expected and call into question what scientists previously understood about galaxy formation at the very beginning of the universe.

“The revelation that massive galaxy formation began extremely early in the history of the universe upends what many of us had thought was settled science,” said Leja. “We’ve been informally calling these objects ‘universe breakers’ — and they have been living up to their name so far.”

Leja explained that the galaxies the team discovered are so massive that they are in tension with 99% percent of models for cosmology. Accounting for such a high amount of mass would require either altering the models for cosmology or revising the scientific understanding of galaxy formation in the early universe — that galaxies started as small clouds of stars and dust that gradually grew larger over time. Either scenario requires a fundamental shift in our understanding of how the universe came to be, he added.

“We looked into the very early universe for the first time and had no idea what we were going to find,” Leja said. “It turns out we found something so unexpected it actually creates problems for science. It calls the whole picture of early galaxy formation into question.”

On July 12, NASA released the first full-color images and spectroscopic data from the James Webb Space Telescope. The largest infrared telescope in space, Webb was designed to see the genesis of the cosmos, its high resolution allowing it to view objects too old, distant or faint for the Hubble Space Telescope.

“When we got the data, everyone just started diving in and these massive things popped out really fast,” Leja said. “We started doing the modeling and tried to figure out what they were, because they were so big and bright. My first thought was we had made a mistake and we would just find it and move on with our lives. But we have yet to find that mistake, despite a lot of trying.”

Leja explained that one way to confirm the team’s finding and alleviate any remaining concerns would be to take a spectrum image of the massive galaxies. That would provide the team data on the true distances, and also the gasses and other elements that made up the galaxies. The team could then use the data to model a clearer of picture of what the galaxies looked like, and how massive they truly were.

“A spectrum will immediately tell us whether or not these things are real,” Leja said. “It will show us how big they are, how far away they are. What’s funny is we have all these things we hope to learn from James Webb and this was nowhere near the top of the list. We’ve found something we never thought to ask the universe — and it happened way faster than I thought, but here we are.”

High-Efficiency, 80 mm Aperture Metalens Telescope

by Lidan Zhang, Shengyuan Chang, Xi Chen, Yimin Ding, Md Tarek Rahman, Yao Duan, Mark Stephen, Xingjie Ni in Nano Letters

Astronomers and amateurs alike know the bigger the telescope, the more powerful the imaging capability. To keep the power but streamline one of the bulkier components, a Penn State-led research team created the first ultrathin, compact metalens telescope capable of imaging far-away objects, including the moon.

Metalenses comprise tiny, antenna-like surface patterns that can focus light to magnify distant objects in the same way as traditional curved glass lenses, but they have the advantage of being flat. Though small, millimeters-wide metalenses have been developed in the past, the researchers scaled the size of the lens to eight centimeters in diameter, or about four inches wide, making it possible to use in large optical systems, such as telescopes.

“Traditional camera or telescope lenses have a curved surface of varying thickness, where you have a bump in the middle and thinner edges, which causes the lens to be bulky and heavy,” said corresponding author Xingjie Ni, associate professor of electrical engineering and computer science at Penn State. “Metalenses use nano-structures on the lens instead of curvature to contour light, which allows them to lay flat.”

That is one of the reasons, Ni said, modern cellphone camera lenses protrude from the body of the phone: the thickness of the lenses take up space, though they appear flat since they are hidden behind a glass window.

Metalenses are typically made using electron beam lithography, which involves scanning a focused beam of electrons onto a piece of glass, or other transparent substrate, to create antenna-like patterns point by point. However, the scanning process of the electron beam limits the size of the lens that can be created, as scanning each point is time-consuming and has low throughput.

Metalens telescope, with an 80 mm metalens as its objective. A schematic illustration of the metalens telescope.

To create a bigger lens, the researchers adapted a fabrication method known as deep ultraviolet (DUV) photolithography, which is commonly used to produce computer chips.

“DUV photolithography is a high-throughput and high-yield process that can produce many computer chips within seconds,” Ni said. “We found this to be a good fabrication method for metalenses because it allows for much larger pattern sizes while still maintaining small details, which allows the lens to work effectively.”

The researchers modified the method with their own novel procedure, called rotating wafer and stitching. Researchers divided the wafer, on which the metalens was fabricated, into four quadrants, which were further divided into 22 by 22 millimeter regions — smaller than a standard postage stamp. Using a DUV lithography machine at Cornell University, they projected a pattern onto one quadrant through projection lenses, which they then rotated by 90 degrees and projected again. They repeated the rotation until all four quadrants were patterned.

“The process is cost-effective because the masks containing the pattern data for each quadrant can be reused due to the rotation symmetry of the metalens,” Ni said. “This reduces the manufacturing and environmental costs of the method.”

As the size of the metalens increased, the digital files required to process the patterns became significantly larger, which would take a long time for the DUV lithography machine to process. To overcome this issue, the researchers compressed the files using data approximations and by referencing non-unique data.

“We utilized every possible method to reduce the file size,” Ni said. “We identified identical data points and referenced existing ones, gradually reducing the data until we had a usable file to send to the machine for creating the metalens.”

Using the new fabrication method, the researchers developed a single-lens telescope and captured clear images of the lunar surface — achieving greater resolution of objects and much farther imaging distance than previous metalenses. Before the technology can be applied to modern cameras, however, researchers must address the issue of chromatic aberration, which causes image distortion and blurriness when different colors of light, which bend in different directions, enter a lens.

“We are exploring smaller and more sophisticated designs in the visible range, and will compensate for various optical aberrations, including chromatic aberration,” Ni said.

Orbit-to-ground framework to decode and predict biosignature patterns in terrestrial analogues

by Kimberley Warren-Rhodes, Nathalie A. Cabrol, et al in Nature Astronomy

Wouldn’t finding life on other worlds be easier if we knew exactly where to look? Researchers have limited opportunities to collect samples on Mars or elsewhere or access remote sensing instruments when hunting for life beyond Earth. In a paper, an interdisciplinary study led by SETI Institute Senior Research Scientist Kim Warren-Rhodes, mapped the sparse life hidden away in salt domes, rocks and crystals at Salar de Pajonales at the boundary of the Chilean Atacama Desert and Altiplano. Then they trained a machine learning model to recognize the patterns and rules associated with their distributions so it could learn to predict and find those same distributions in data on which it was not trained. In this case, by combining statistical ecology with AI/ML, the scientists could locate and detect biosignatures up to 87.5% of the time (versus ≤10% by random search) and decrease the area needed for search by up to 97%.

“Our framework allows us to combine the power of statistical ecology with machine learning to discover and predict the patterns and rules by which nature survives and distributes itself in the harshest landscapes on Earth,” said Rhodes. “We hope other astrobiology teams adapt our approach to mapping other habitable environments and biosignatures. With these models, we can design tailor-made roadmaps and algorithms to guide rovers to places with the highest probability of harboring past or present life — no matter how hidden or rare.”

Ultimately, similar algorithms and machine learning models for many different types of habitable environments and biosignatures could be automated onboard planetary robots to efficiently guide mission planners to areas at any scale with the highest probability of containing life. Rhodes and the SETI Institute NASA Astrobiology Institute (NAI) team used the Salar de Pajonales, as a Mars analog. Pajonales is a high altitude (3,541 m), high U/V, hyperarid, dry salt lakebed, considered inhospitable to many life forms but still habitable.

Macro- and microhabitat composition and biosignature detection probabilities.

During the NAI project’s field campaigns, the team collected over 7,765 images and 1,154 samples and tested instruments to detect photosynthetic microbes living within the salt domes, rocks and alabaster crystals. These microbes exude pigments that represent one possible biosignature on NASA’s Ladder of Life Detection. At Pajonales, drone flight imagery connected simulated orbital (HiRISE) data to ground sampling and 3D topographical mapping to extract spatial patterns. The study’s findings confirm (statistically) that microbial life at the Pajonales terrestrial analog site is not distributed randomly but concentrated in patchy biological hotspots strongly linked to water availability at km to cm scales.

Next, the team trained convolutional neural networks (CNNs) to recognize and predict macro-scale geologic features at Pajonales — some of which, like patterned ground or polygonal networks, are also found on Mars — and micro-scale substrates (or ‘micro-habitats’) most likely to contain biosignatures. Like the Perseverance team on Mars, the researchers tested how to effectively integrate a UAV/drone with ground-based rovers, drills and instruments (e.g., VISIR on ‘MastCam-Z’ and Raman on ‘SuperCam’ on the Mars 2020 Perseverance rover).

The team’s next research objective at Pajonales is to test the CNNs ability to predict the location and distribution of ancient stromatolite fossils and halite microbiomes with the same machine learning programs to learn whether similar rules and models apply to other similar yet slightly different natural systems. From there, entirely new ecosystems, such as hot springs, permafrost soils, and rocks in the Dry Valleys, will be explored and mapped. As more evidence accrues, hypotheses about the convergence of life’s means of surviving in extreme environments will be iteratively tested, and biosignature probability blueprints for Earth’s key analog ecosystems and biomes will be inventoried.

“While the high-rate of biosignature detection is a central result of this study, no less important is that it successfully integrated datasets at vastly different resolutions from orbit to the ground, and finally tied regional orbital data with microbial habitats,” said Nathalie A. Cabrol, the PI of the SETI Institute NAI team. “With it, our team demonstrated a pathway that enables the transition from the scales and resolutions required to characterize habitability to those that can help us find life. In that strategy, drones were essential, but so was the implementation of microbial ecology field investigations that require extended periods (up to weeks) of in situ (and in place) mapping in small areas, a strategy that was critical to characterize local environmental patterns favorable to life niches.”

Effects of rapid gravity load changes on immunophenotyping and leukocyte function of human peripheral blood after parabolic flight

by Abril Gorgori-González, Antoni Perez-Poch, Daniel V. González, Roser Salvia, Laura G. Rico, Michael D. Ward, Jolene A. Bradford, Jordi Petriz, Ginés Viscor in Acta Astronautica

Space travel has always tested the human body by the effects of the new conditions of altered gravity on biological systems. It has long been known that continuous exposure to microgravity conditions human physiology and causes effects that compromise muscular, sensory, endocrine and cardiovascular functions. But is it also risky to be exposed to altered gravity for short periods of time?

Now, a paper examines the effects on the human immune system of microgravity generated by a parabolic flight. After a short exposure to altered gravity, there were no significant changes in the defensive capacity of blood cells in the volunteers who took part in the study. In addition, the study found no evidence of aggregation processes in erythrocytes — the cells that transport O2 and CO2 to the cardiovascular system — after the parabolic flight.

The study was coordinated by Ginés Viscor, professor at the Department of Cell Biology, Physiology and Immunology of the Faculty of Biology of the University of Barcelona, and it included the participation of experts Jordi Petriz, from the Germans Trias i Pujol Research Institute (IGTP), and Antoni Pérez-Poch, from the Technical University of Catalonia-BarcelonaTech (UPC) and the Institute of Space Studies of Catalonia (IEEC), among other authors. The first author of the study is the researcher Abril Gorgori-González (UB). It counted on the support from the Medical Service of the Safety, Health and Environment Office (OSSMA) of the UB, the Aeroclub Barcelona-Sabadell and the company Thermo Fisher Scientific.

Experimental design. The experiment started at 8:15 in the morning with the blood extraction which lasted 55 min. After, the samples arrived at the Sabadell airport at 9:42 and the parabolic flight started at 10:20 until 10:43. Functional and phenotypic analysis started at 12:30 and lasted 240 and 1320 min respectively. Finally, the haematological profile started at 13:41 until 14:25.

Space travel is the ideal scenario to study the effect of microgravity on the human body. These trips make it possible to study the consequences of long-term exposure to microgravity on different astronauts simultaneously, but they require a high cost in terms of time, funding and infrastructure. Without leaving the Earth’s atmosphere, it is also possible to simulate simulated gravity conditions on different platforms. For example, through parabolic flights in aircraft, which make it possible to study the effect of altered microgravity in the short term — even for a few seconds — at an affordable cost.

“Artificial platforms such as parabolic flights in aircraft provide valuable but more limited results, as they only allow the effects of altered gravity to be studied in the short term (seconds or minutes). Therefore, the profiles of physiological changes that can be recreated with parabolic flights are immediate and transitory changes that microgravity generates in the human body,” says Ginés Viscor, head of the Adaptive Physiology Group: Exercise, Hypoxia and Health at the UB.

As part of the study, a 20-minute parabolic flight was conducted with the Mudry CAP10 aircraft — a 2-seat aerobatic training aircraft — during which fifteen parabolas were performed. “Each parabola allows a period of microgravity to be reached for approximately eight seconds, which is followed and preceded by hypergravity phases of about two seconds,” says the researcher Antoni Pérez-Poch, from the Department of Computer Science at the UPC, and lecturer of the School of Engineering of Barcelona East (EEBE) of the UPC and the IEEC.

These parabolic flights with an aerobatic plane — a pioneering method in the world, developed in Catalonia — were operated by the Aeroclub Barcelona-Sabadell and are the result of an aeronautical research carried out in collaboration with the UPC. “This innovative technique has a good ratio of time achieved in microgravity compared to the cost of maintenance, which is very favourable compared to the greater use of aircraft, although it also has some limitations (logistical and space). In the case of parabolic flights with a larger aircraft, a more expensive operation that has been used since the beginning of the space race by agencies such as NASA or ESA (European Space Agency), up to 25 seconds per parabola could be achieved,” says Pérez-Poch.

Data obtained from the parabolic flight in which samples were exposed. On the Y left axis, the height in meters (blue line); on the X axis, time (milliseconds); and on the Y right axis, residual acceleration values (g = 9,81 m/s2; pink line).

The immediate effects of microgravity on the blood system derive from the redistribution of blood volume, blood flow and body fluids to the upper body. “Cardiovascular adaptations consist of an altered cardiovascular response causing abnormalities in body orientation and balance, poor response to orthostatic stress, decreased cardiac function and inadequate cardiovascular response to exercise,” says Ginés Viscor.

One of the most vulnerable physiological systems to any change in environmental conditions is the immune system, and this is explained by its great plasticity and responsiveness to internal and external imbalances. In the scientific literature, there are still no conclusive results on the immune response to short exposure in flights with altered gravity, and in some cases the conclusions are even contradictory.

In this study, the team analysed the response of the immune system to short exposure to microgravity based on several parameters: erythrocyte and leukocyte counts, haemoglobin concentration, phagocytic capacity and oxidative metabolism.

“The results reveal that the human blood samples’ exposure to altered gravity conditions in parabolic flight did not involve negative effects in relation to samples that were left parallelly on the ground during the experimental study. There are also no significant changes in peripheral blood cell counts,” says Jordi Petriz (IGTP).

“Except for the monocytes — a type of leukocyte — no significant differences have been observed in the functionality of immune cells in terms of either their oxidative metabolism or their phagocytic capacity,” says researcher Abril Gorgori-González (UB). “Hypothetically, if there were changes in the functionality of leukocytes when exposed to an altered gravity, the immune function and defence against external infections or tumour processes would also be compromised.”

The team has applied the technique of flow cytometry with acoustic focusing with little manipulation of the volunteers’ blood samples. According to the authors, the sample limitation typical of acrobatic flight studies — with logistical constraints — does not allow general conclusions to be drawn. Therefore, the goal now is to continue research on the human immune system with other microgravity simulation platforms to study physiological alterations, avoid complications and anticipate risk situations.

Space tourism is an activity of great economic interest for some business sectors. However, one of the main differences between space tourists and astronauts is the physical and psychological preparation prior to the trip.

“Altered gravity or the constant lack of gravity is one of several changes in the environment faced by these space travellers. The human body has evolved under the conditions of Earth’s gravity and is not adapted to the absence of this attractive force. In space travel, other factors such as ionising radiation, constant noise, isolation, confinement, a total distortion of circadian rhythms and short exposure to extreme temperatures during the return to the atmosphere have to be considered,” the experts warn.

“Long-term metabolic, osteoporosis and ophthalmological problems have also been described. Although the effect of space travel on untrained space travellers has not been studied, it is possible that all the stressors of the physical environment could negatively affect the health of space tourists. Therefore, for the time being, ‘outer space visits’ are designed to be of short duration,” the team concludes.

Distance determination of molecular clouds in the first quadrant of the Galactic plane using deep learning: I. Method and results

by Shinji Fujita, Atsushi M Ito, Yusuke Miyamoto, et al in Publications of the Astronomical Society of Japan

Osaka Metropolitan University scientists identified about 140,000 molecular clouds in the Milky Way Galaxy from large-scale data of carbon monoxide molecules, observed in detail by the Nobeyama 45-m radio telescope. Using artificial intelligence, the researchers estimated the distance of each of these molecular clouds to determine their size and mass, successfully mapping the distribution of the molecular clouds in the Galaxy in the most detailed manner to date.

Stars are formed by molecular gas and dust coalescing in space. These molecular gases are so dilute and cold that they are invisible to the human eye, but they do emit faint radio waves that can be observed by radio telescopes.

Observing from Earth, a lot of matter lies ahead and behind these molecular clouds and these overlapping features make it difficult to determine their distance and physical properties such as size and mass.

So, even though our Galaxy, the Milky Way, is the only galaxy close enough to make detailed observations of molecular clouds in the whole universe, it has been very difficult to investigate the physical properties of molecular clouds in a cohesive manner from large-scale observations.

A research team led by Dr. Shinji Fujita from the Osaka Metropolitan University Graduate School of Science, identified about 140,000 molecular clouds in the Milky Way Galaxy, which are areas of star formation, from large-scale data of carbon monoxide molecules, observed in detail by the Nobeyama 45-m radio telescope. Using artificial intelligence, the research team estimated the distance of each of these molecular clouds, determined their size and mass and successfully mapped their distribution, covering the first quadrant of the Galactic plane, in the most detailed manner to date.

MISC

Subscribe to Paradigm!

Medium. Twitter. Telegram. Telegram Chat. Reddit. LinkedIn.

Main sources

Research articles

Nature Astronomy

The Astrophysical Journal

Science Daily

Space News

--

--