Robert Lea
Sep 29, 2018 · 3 min read

Researchers at the Large Hadron Collider b (LHCb) collaboration have discovered two never-before-observed particles conforming to the ‘quark-model’ of physics in high-energy collisions. Excitingly, the team have also uncovered enticing hints at a third more exotic particle.

The hope is that further study of these particles will lead researchers to a deeper understanding of the force which binds quarks together to form larger particles.

The LHCb experiment at CERN was the site of the discovery of two new particles with hints at a third

The newly discovered particles are of the same family as familiar particles such as protons and neutrons, which form the atomic nucleus of all elements, baryons.

A baryon is a subatomic particle made up of an odd number of quarks, 3 in the case of protons and neutrons. The particles that the LHCb team have discovered differ from protons and neutrons in the respect that the quarks that make them up are a different arrangement than previously discovered.

A proton is comprised of ‘up’ (u) quarks and one ‘down’ quark (d). Whilst a neutron is comprised of two ‘down’ quarks and an ‘up’ quark. Below is a diagram of the traditional arrangement found in protons (uud) and neutrons (udd) bound by the strong nuclear force.

In addition to existing in ‘up’ and ‘down’ forms. quarks also exist in larger pairs ‘charm’ and ‘strange’ and larger still versions ‘top’ (t) and ‘bottom’ (b).

The newly discovered particles named Σb(6097)+ and Σb(6097)- are comprised of one bottom quark and two up quarks (buu) or one bottom quark and two down quarks (bdd) respectively. The “6097” in the name refers to the mass of the particles in MeV, making them roughly six times more massive than the proton.

Related particles have previously been discovered by Fermilab based in Illinois, but this is the first time that larger mass counterparts have been detected.

Excitingly the third particle which has been named Zc-(4100)which was not observed but was strongly hinted at, is a candidate for an entirely different quark arrangement, not made of the usual two or three quarks but of two quarks and two anti-quarks. These exotic particles have been named “tetraquarks” and have long predicted to exist alongside even larger quark collaborations “pentaquarks” containing five quarks.

The team at LHCb discovered these new particles by using a common “particle-hunting” technique that revolves around looking for an excess of events or a “bump” in the data obtained from particle collisions. The Zc-(4100) resulted from the observation of structures produced in the beta-decay of heavier B mesons.

The “bumps” in the data from particle collisions which informed the LHCb team they had discovered two new particles

It is hoped that the Zc-(4100) particle can be confirmed by further experimentation as the level of confidence for its discovery, 3 standard deviations, is thus far much lower than that of Σb(6097)+ and Σb(6097)- which stands at over 12 standard deviations. The required level for classifying a discovery is at least 5 standard deviations.

The team at LHCb, who have submitted the findings for publication to various physics journals, hope that continued exploration of these newly discovered particles may shed light on the ‘strong nuclear force’, one of the four fundamental forces of nature, which is responsible or not only binding quarks together, but also neutrons and protons.


where the future is written

Robert Lea

Written by

Freelance science writer/journalist. Space. Physics. Astronomy. Quantum physics. Member of the ABSW. Follow me at



where the future is written

Welcome to a place where words matter. On Medium, smart voices and original ideas take center stage - with no ads in sight. Watch
Follow all the topics you care about, and we’ll deliver the best stories for you to your homepage and inbox. Explore
Get unlimited access to the best stories on Medium — and support writers while you’re at it. Just $5/month. Upgrade