Netflix for disaster images

Image for post
Image for post
Purdue Professor Shirley Dyke and postdoctoral researcher Chul Min Yeum examine some of the thousands of images they are using to train machines to recognize structural damage.

Engineers face a colossal task documenting perishable data to record the damage to our infrastructure after a natural disaster, as they try to understand the consequences of the event and how the buildings performed. Teams spend weeks on-site and invest large amounts of resources, collecting thousands of photographs of buildings all day long, and in the evenings, they spend more hours trying to organize the data to figure out what they learned. Purdue’s Intelligent Infrastructure Systems Laboratory (IISL) is working to turn that time into minutes through artificial intelligence (AI) and make it a much more efficient process.

We consider our system to be a Netflix for Disaster Images. The systems available for managing this data today are not suitable for engineering use. They’re clumsy, and it’s difficult to find specific data unless you already know where it is. We’re trying to make the data instantly searchable and accessible by providing sorting and visualization capabilities — enabling valuable information to be uncovered quickly to assess damage, identify knowledge gaps, and improve our infrastructure to prepare for the next event.

Engineers need to be able to simply drop their images into a tool that will exploit Al to organize the data in the most useful ways. We have developed such a tool: ARIO — Automated Reconnaissance Image Organizer — to sort and assemble a large volume of images into reports with categories for each image, so people can see what happened to a particular building much more quickly. In addition, we provide tools to allow people to search more widely through those images and readily find what they’re seeking. The underlying framework is called VISER — Visual Structural Expertise Replicator — which will reproduce engineers’ ability to analyze and organize the data using AI.

For example, we easily could compare the problems observed after the 2017 Mexico City earthquake with those documented after the 2018 Taiwan earthquake, to check for any similarities in building codes and in design and construction techniques that might exacerbate or prevent certain types of damage. One then could build computer models of new buildings based on the findings, with the ultimate goal to improve standardized building codes.

At our lab, we focus on developing AI algorithms to empower structural engineers to learn from disasters much more efficiently. It’s all about accelerating and expanding the way we review and learn from the vast amounts of data documenting the performance of buildings, so we can identify and address gaps in building design codes and address them to mitigate the effects of disasters on our infrastructure.

There are many sources for this type of data around the world, including the Earthquake Engineering Research Institute, the National Institute of Standards and Technology, the Natural Hazards Engineering Research Infrastructure, and the DataCenter Hub at Purdue. However, extracting information generally is a labor-intensive, manual process; there is no capability for automatically organizing and searching the data similar to the system that we built and include in our tool.

Image for post
Image for post

Funded by the National Science Foundation’s Cyberinfrastructure for Sustained Scientific Innovation, we are training deep neural networks to recognize and organize the data to help people more easily find what they want — critical when datasets and architectural features differ widely from country to country and event to event. We’re trying to give engineers the power to extract the images they seek quickly by looking across time and space, historic events, and geographic regions.

Society is asking engineers to build some of the tallest structures in the history of the world, and this requires extending our designs well beyond what has been validated in the laboratory. Therefore, in reality, the world around us is our laboratory — we have to be able to learn from how these structures perform, so we can make our infrastructure resilient and safe for society. Then we must train the next generation in the fundamentals. It’s not enough to say computer models can just take care of this need. Whenever a natural disaster compromises the integrity of our buildings, we must be able to quickly determine what went wrong on the ground and what can be improved.

Image for post
Image for post

Shirley J. Dyke

Professor of Mechanical and Civil Engineering

School of Mechanical Engineering

College of Engineering, Purdue University

Related Links

Discovery: Teaching machines to pinpoint earthquake damage

Video: Rapid analysis of disaster damage

Video: ARIO for Disaster Image Organization Search

Purdue to lead multihazard research with $4.1 million NSF award

Intelligent Infrastructure Systems Laboratory (IISL)

Engineering Structures: Towards fully automated post-event data collection and analysis: Pre-event and post-event information fusion

Purdue Engineering Review: Shirley Dyke is helping to engineer the future of life in space

Purdue Engineering

Pioneering groundbreaking technology, unlocking…

Purdue College of Engineering

Written by

Known as the “Cradle of Astronauts,” with a long list of pioneers includes Neil Armstrong and Amelia Earhart. Ranked Top 10 nationwide by USNWR.

Purdue Engineering

Pioneering groundbreaking technology, unlocking revolutionary ideas and advancing humankind across the country, planet and universe. Explore how leading educators, thinkers and innovators at the Purdue University College of Engineering are shaping the future — and beyond.

Purdue College of Engineering

Written by

Known as the “Cradle of Astronauts,” with a long list of pioneers includes Neil Armstrong and Amelia Earhart. Ranked Top 10 nationwide by USNWR.

Purdue Engineering

Pioneering groundbreaking technology, unlocking revolutionary ideas and advancing humankind across the country, planet and universe. Explore how leading educators, thinkers and innovators at the Purdue University College of Engineering are shaping the future — and beyond.

Medium is an open platform where 170 million readers come to find insightful and dynamic thinking. Here, expert and undiscovered voices alike dive into the heart of any topic and bring new ideas to the surface. Learn more

Follow the writers, publications, and topics that matter to you, and you’ll see them on your homepage and in your inbox. Explore

If you have a story to tell, knowledge to share, or a perspective to offer — welcome home. It’s easy and free to post your thinking on any topic. Write on Medium

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store