Should Buildings Have Expiration Dates?

The Case for Architectural Shelf Life

Ryan Mullenix
re:form

--

I’m dying. This isn’t news I received from a doctor, it’s just the truth. I hate to break it to you, but you’re dying too. In fact, we can be fairly certain that almost anyone reading this will have taken their last breath by the end of this century. Believe it or not, the same holds true for our buildings.

I’m not stating this out of some obsession with death. I don’t have a fatalist sense that life will pass me by without a chance to leave a strong legacy for the generations that follow. Rather, I’m concerned that the places we are building won’t do the same.

A large percentage of our built environment has a surprisingly high “mortality” rate. In fact, the lifespan of a building — made of concrete, steel, wood — is shorter than that of a flesh-and-blood human. According to the U.S. Department of Energy, the average office building lifespan in 2008 was 73 years. In contrast, human life expectancy in the U.S. was 78 years [PDF]. Given their similar life expectancy, one would assume we spend a comparable amount of money on a person’s shelter as we do on other essential aspects of their life, right?

The Bureau of Labor Statistics estimated in 2008 the average cost of living on food, shelter, transportation, and healthcare to be around $35,000 per year — or more than $2.7 million during a 78-year lifetime. We spend that on ourselves simply to survive. And what about the office environment where, for 45 of those 78 years, we will devote more than 50% of our waking hours? We currently spend around $200 per square foot for a conventional office building, with each worker needing roughly 200 square feet to do their job (direct work, collaboration, breaks, storage, etc.). That’s a total cost of $40,000 per person for every new building built. Additionally, according to the Building Owners and Managers Association, the average annual operating costs are about $8/sf (or $1,600/sf per person each year), which over a 45-year career yields a total operating cost per person of $72,000. In total, we’re allocating about $112,000 per person on buildings during an individual’s career.

The quick math? We spend 24x less on the facilities shaping our daily experience and health than we do on the bodies that inhabit them. Yet I’ll wager most people expect buildings to outlive them many times over.

This seems like a misalignment worth exploring, especially as we aspire to improve the health of both our cities and their citizens. Are we expecting too much from our buildings, or are we not spending enough money on them? Either way, here are two approaches that may help us start the uncomfortable conversation on the merits of “architectural euthanasia.”

Option 1:

Long Live the Short-Lived

As humans we’re predestined, eventually, to return to earth, ashes, and dust. Based on their similar lifespan, should buildings have the same fate? When buildings cease to change, when they cease to give back, when they cease to learn, they die. Yet we have a tendency to put them on life support, often for long periods of time. Instead of investing in “permanent” materials that, ironically, will be deconstructed in less than a century, let’s instead focus on lightweight, rapidly constructible and dismantle-able solutions as part of a flexible, component-driven system.

Above images: Schlumberger Cambridge Research Centre, United Kingdom. Courtesy of View Pictures/UIG via Getty Images.

For instance, lightweight tensile structures are deployed throughout the globe to house sports, social venues and even laboratories, and can more broadly be considered for day-lit envelopes or inflatable facilities that disappear when not in use. Or imagine the beauty — both literal and figural — of exterior walls where reusable felt panels become both insulation and rainscreeen. Explorations in paper materials such as cardboard have become more prevalent, while 3-D printing affords us the opportunity to experiment with soluble materials that simply wash away after serving their purpose.

Materials for short-term buildings don’t necessarily have to be less durable, but they likely need to perform more than one function. A single material serving as structure, enclosure and window is faster and simpler to assemble — and therefore more likely to encourage a project to go up or come down. Perhaps we can learn a thing or two from millennia of nomadic lifestyles.

Both images of Christchurch Cathedral designed by Shigeru Ban. Left, courtesy of Jocelyn Kinghorn/Flickr. Right, courtesy of Design Milk/Flickr.
Left photo of 3-D sugar soluble in the making. Right photo is a final product. Both courtesy of Windell Oskay/Flickr.

Option 2:

Forever Young

We started designing for human health centuries ago, and the outcome on the built environment has been noticeable. The term euthenicsthe study of the improvement of human functioning and well-being by the improvement of living conditions — was coined in the 1890s when society began to stress the importance of natural light, fresh air and open space in the buildings that shape everyone’s daily life. Cast-iron façades and long-span timber elements were effective approaches to freeing up both the exterior and the floor plan. Not by coincidence, the buildings that succeeded in doing this best a hundred years ago are some of today’s most sought-after real estate investments.

Some of our biggest challenges with structures derive from our failure to foresee the continual changes that occur in how we live and work. Architecture that uses an exoskeleton — or structural elements on the exterior — is a strong first step towards accommodating such change, eliminating internal columns and walls that often constrain the uses around them. Moment connections at columns can do the same while enabling future flexibility for the placement of elevator cores and floor openings. Taller floor-to-floor heights invite daylight deeper into a space — making it more comfortable and usable — while providing a greater range of opportunities for evolving programmatic needs, from offices, to residences, to loft-like workspaces or even labs or industrial use.

Both images of the United States Steelworkers Building in Pittsburgh. Left, courtesy of Luke Gordon/Flickr. Right, courtesy of takomabibelot/Flickr.

Interestingly, it’s not the materials in long-term buildings that need to be more durable, but rather the forward-thinking ideas about how space will be used. Perhaps this conceptual trajectory might force us to rethink our criteria for sustainable features, so that conversion and adaptive reuse would trump bicycle storage and recycled materials.

We can spend less on shelter and, like buying furniture at Ikea, know we will get something that is decently crafted but will last only a few years. Or we can spend more on design, materials, mechanical systems, exterior walls, floor-to-floor heights, and so on and guarantee that our buildings will outlive us and the generations to follow.

Think of it like the sell-by on a grocery item. Perishable foods must be used up quickly, while shelf-stable foods are labeled for the longer term, packaged as nutritional insurance for the future. Perhaps it’s time we establish the same expectations for our buildings, designing with the knowledge that they, too, have an expiration date.

Ryan Mullenix is a partner at NBBJ Design.
You can follow him
on Twitter at @ryanjmullenix. Subscribe to re:form’s RSS feed, sign up to receive our stories by email, and follow the main page here.

--

--

Ryan Mullenix
re:form
Writer for

Ryan is an architect and partner at @nbbjdesign