Image by Caroline Ingram (CC BY-ND 2.0 UK)

How do leaves know when to turn yellow?

Two proteins help to ensure that plants recycle nutrients from their leaves at the right time.

eLife
Published in
3 min readNov 30, 2016

--

The leaves of many plants turn yellow in the fall as nutrients are recycled to prepare for the winter months. However, if leaves age and yellow too early, it can limit how much energy the plant can harvest from light. Thus, it is crucial for plants to know when they should start the leaf aging process. This is also important for plant biologists because premature leaf yellowing can reduce both the yield and quality of crop plants.

Certain aging-related genes tightly control when and how leaves age. Like in many other organisms, plant DNA is packaged around proteins called histones. As such, one of the ways that plants regulate the activity of their genes is by chemically modifying the DNA or histones to alter how tightly the DNA is packaged. For example, to switch particular genes off, enzymes known as histone deacetylases remove an acetyl group from their histones. However, it is not clear how these enzymes know which genes to modify and how this helps to make sure that leaf aging happens at the appropriate time.

Xiangsong Chen and colleagues studied a histone deacetylase called HDA9 in a flowering plant named Arabidopsis. The experiments show that the HDA9 enzyme plays an important role in ensuring the leaves turn yellow at the right time. Without HDA9, the leaf aging process is delayed. HDA9 also needs the help of another protein called PWR that instructs HDA9 to remove acetyl groups from the histones of specific aging-associated genes in order to switch these genes off.

The next challenge is to understand how HDA9 and PWR sense developmental and environmental signals to trigger the histone modifications. It will also be important to decipher how this enzyme works with other regulators to trigger leaf aging at the right time.

To find out more

Read the eLife research paper on which this eLife digest is based: “POWERDRESS interacts with HISTONE DEACETYLASE 9 to promote aging in Arabidopsis” (November 22, 2016).

eLife is an open-access journal for outstanding research in the life sciences and biomedicine.
This text was reused under a Creative Commons Attribution 4.0 International License.

--

--

eLife
Roots and Shoots

Cutting jargon and putting research in context