Reconstruction of a newly-formed phloem tube. Image credit: Ross-Elliot et al.

Phloem delivery

In plants, phloem tubes deliver sugars and other molecules to where they are most needed — but how?

eLife
Published in
2 min readJun 14, 2017

--

A mechanism called photosynthesis allows plants to use energy from sunlight to make sugars from carbon dioxide gas and water. These sugars can then be used as fuel, or as building blocks for wood and other plant structures. Every part of the plant requires sugars, but most photosynthesis happens in the leaves and stems, so the sugars need to be able to move around the plant to wherever they are needed.

Phloem tubes form a network that transports sugar, proteins and other molecules around the plant within a fluid known as sap. Because this network is so extensive, it is very difficult to study, which has left researchers with major questions about how it works. For example, it is not clear how the sugar and other molecules leave the phloem when they reach their destination.

Timothy Ross-Elliot and colleagues used a combination of microscopy and mathematical modeling to investigate how sugars and other molecules leave the phloem in the roots of a plant called Arabidopsis thaliana. The experiments show that these molecules move directly into cells within a neighboring tissue called the phloem-pole pericycle via pores known as funnel plasmodesmata.

Ross-Elliot and colleagues incorporated the experimental data into a mathematical model of phloem unloading. This model suggests that sugars and other small molecules move freely through the funnel plasmodesmata, but large proteins pass through these pores in pulses. Future challenges include finding out exactly how plants control phloem unloading and to investigate whether it is possible to modify the delivery of specific molecules to particular parts of the plant.

To find out more

Read the eLife research paper on which this eLife digest is based: “Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle” (February 23, 2017).

eLife is an open-access journal that publishes outstanding research in the life sciences and biomedicine.
This text was reused under the terms of a Creative Commons Attribution 4.0 International License.

--

--

eLife
Roots and Shoots

Cutting jargon and putting research in context