Physcomitrella patens plants. Image credits: Elena Kozgunova (CC BY 4.0)

What happens to plants when cell division goes wrong?

Errors in separating chromosomes inside plant cells that are preparing to divide has an unexpected consequence that may benefit agriculture.

eLife
eLife
Mar 28 · 2 min read

Plants and animals, like all living things, are made of self-contained units called cells that are able to grow and multiply as required. Each cell contains structures called chromosomes that provide the genetic instructions needed to perform every task in the cell. When a cell is preparing to divide to make two identical daughter cells — a process called mitosis — it first needs to duplicate its chromosomes and separate them into two equal-sized sets. This process is carried out by complex cell machinery known as the spindle.

Structures called kinetochores assemble on the chromosomes to attach them to the spindle. Previous studies in animal cells have shown that, if the kinetochores do not work properly, one or more chromosomes may be left behind when the spindle operates. These ‘lagging’ chromosomes may ultimately land up in the wrong daughter cell, resulting in one of the cells having more chromosomes than the other. This can lead to cancer or other serious diseases in animals. However, it was not known what happens in plant cells when kinetochores fail to work properly.

To address this question, Kozgunova et al. used a technique called RNA interference (or RNAi for short) to temporarily interrupt the production of kinetochores in the cells of a moss called Physcomitrella patens. Unexpectedly, the experiments found that most of the moss cells with lagging chromosomes were unable to divide. Instead, they remained as single cells that had twice the number of chromosomes as normal, a condition known as polyploidy. After the effects of the RNAi wore off, these polyploid moss cells were able to divide normally and were successfully grown into moss plants with a polyploid number of chromosomes.

Polyploidy is actually widespread in the plant kingdom, and it has major impacts on plant evolution. It is also known to increase the amount of food that crops produce. However, it is still unclear why polyploidy is so common in plants. By showing that errors in mitosis may also be able to double the number of chromosomes in plant cells, the findings of Kozgunova et al. provide new insights into plant evolution and, potentially, a method to increase polyploidy in crop plants in the future.


Roots and Shoots

Delving into ground-breaking research in plant science

eLife

Written by

eLife

Cutting jargon and putting research in context

Roots and Shoots

Delving into ground-breaking research in plant science

Welcome to a place where words matter. On Medium, smart voices and original ideas take center stage - with no ads in sight. Watch
Follow all the topics you care about, and we’ll deliver the best stories for you to your homepage and inbox. Explore
Get unlimited access to the best stories on Medium — and support writers while you’re at it. Just $5/month. Upgrade