Self-Driving Cars In Space

David Silver
Self-Driving Cars
Published in
2 min readFeb 28, 2021

Geely, a Chinese automotive manufacturer that also owns Volvo, announced will launch hundreds, and perhaps thousands, of satellites, in order to support V2X and V2V communication.

The launches are a little ways down the road — the current press release touts breaking ground on the facility that will manufacture the satellites.

“Geely Technology Group knows how to start the Lunar New Year right — with important news regarding its future low-orbit exploits. On February 18th 2021, its Taizhou Facility was given its license to begin the commercial manufacturing of its satellites, which will be ultimately used for realizing Vehicle-to-vehicle (V2V) and Vehicle-to X-(V2X) communications to realize full autonomous self-driving.

The license, awarded by China’s National Development and Reform Commission, essentially means that the factory, located in Geely Group’s original hometown of Taizhou in Zhejiang Province, can begin production. When production begins, at present planned for October of this year, the facility will have an estimated production output of over 500 satellites per year.”

In an interesting twist that I hadn’t thought about until now, Geely categorizes these satellites as “new infrastructure.” There’s been a lot of talk in the automotive world about China’s ability to build infrastructure much faster than the US’s, and the advantages that may or may not bring. But I had always assumed this meant infrastructure on the ground. I hadn’t really thought about satellites as “infrastructure.”

The Geely press release is pretty sparse and focuses on V2X communication as the goal, but an article in SpaceNews suggests that the satellites may also foster an alternative and more accureate form of GPS / GNSS. That would make sense, as I typically think of satellites as being useful for receiving data on the ground, but not so much for sending data to the satellite. V2X would require two-way transmission, but navigation systems typically only require one-way reception of data.

GPS has been run more-or-less as an international public service by the US government for decades. Attempts to augment it have typically relied on ground-base supplementary broadcast stations, but those are hard to scale and are easily blocked by hilly terrain. If a private Chinese automotive company controls the next generation of navigation satellites, that would be a big change with potentially big implications.

--

--