Einstein deriving special relativity, for an audience of onlookers, in 1934. The consequences of applying relativity to the right systems require that, if we demand energy conservation, E = mc² must be valid. (PUBLIC DOMAIN IMAGE)

Ask Ethan: If Einstein Is Right And E = mc², Where Does Mass Get Its Energy From?

It isn’t just that mass and energy are equivalent and interchangeable. It tells us something fundamental about mass itself.

Ethan Siegel
Starts With A Bang!
8 min readMar 28, 2020

--

Of all the equations that we use to describe the Universe, perhaps the most famous one, E = mc², is also the most profound. First discovered by Einstein more than 100 years ago, it teaches us a number of important things. We can transform mass into pure energy, such as through nuclear fission, nuclear fusion, or matter-antimatter annihilation. We can create particles (and antiparticles) out of nothing more than pure energy. And, perhaps most interestingly, it tells us that any object with mass, no matter how much we cool it, slow it down, or isolate it from everything else, will always have an amount of inherent energy to it that we can never get rid of. But where does that energy come from? That’s what Rene Berger wants to know, asking:

My question is, in the equation E = mc², where does the energy in the “m” come from?

Let’s dive inside matter on the smallest scales to find out.

--

--

Ethan Siegel
Starts With A Bang!

The Universe is: Expanding, cooling, and dark. It starts with a bang! #Cosmology Science writer, astrophysicist, science communicator & NASA columnist.