Hydrogen atom, the building block of nuclear processes in the Sun, in a particular quantum state. Image credit: Wikimedia Commons user Berndthaller, under a c.c.a.-s.a. 4.0 license.

How does quantum mechanics allow the Sun to shine?

Without the inherent quantum uncertainty to nature, the source of all our light and heat would never shine.

Ethan Siegel
Starts With A Bang!
5 min readJun 8, 2016

--

“The bedrock nature of space and time and the unification of cosmos and quantum are surely among science’s great ‘open frontiers.’ These are parts of the intellectual map where we’re still groping for the truth — where, in the fashion of ancient cartographers, we must still inscribe ‘here be dragons.’”
-
Martin Rees

The greatest source of concentrated energy in the Universe today is starlight, where the largest single objects in the Universe emit tremendous amounts of power through the smallest of processes: the nuclear fusion of subatomic particles. If you happen to be on a planet in orbit around such a star, it can provide you with all the energy necessary to facilitate complex chemical reactions, which is exactly what happens here on the surface of Earth.

How does this happen? Deep inside the hearts of stars — including in our own Sun’s core — light elements are fused together under extreme conditions into heavier ones. At temperatures over about 4 million kelvin and at densities more than ten times that of solid lead, hydrogen nuclei (single protons) can fuse together in a chain reaction to form helium nuclei (two protons and…

--

--

Ethan Siegel
Starts With A Bang!

The Universe is: Expanding, cooling, and dark. It starts with a bang! #Cosmology Science writer, astrophysicist, science communicator & NASA columnist.