This simulation shows the radiation emitted from a binary black hole system. In principle, we should have neutron star binaries, black hole binaries, and neutron star-black hole systems, covering the entire allowable mass range. In practice, we see a ‘gap’ in such binaries between about 2.5 and 5 solar masses. It is a great puzzle for modern astronomy to find this missing population of objects. (NASA’S GODDARD SPACE FLIGHT CENTER)

Is LIGO About To Destroy The Theory Of A ‘Mass Gap’ Between Neutron Stars And Black Holes?

What’s more massive than the heaviest known neutron star but lighter than the lightest known black hole? LIGO may be about to solve that mystery.

Ethan Siegel
9 min readSep 17, 2019

--

Whenever a star is born in the Universe, its eventual fate is almost completely determined from the moment nuclear fusion ignites in its core. Dependent only on a few factors — mass, the presence of elements heavier than helium, and whether it’s part of a multi-star system — we can calculate with dramatic accuracy what the eventual fate of a star born with specific properties will be.

For most stars, including all the stars similar to our Sun, the eventual fate will be a white dwarf: an extremely dense collection of atoms more massive than dozens (or even hundreds) of Jupiters, but only the size of planet Earth. For more massive stars, though, a more catastrophic fate awaits: a supernova, which could either give rise to a neutron star or black hole remnant. There may or may not be a mass gap between the heaviest neutron stars and the lightest black holes formed by supernova, and humanity’s never been in a better position to find out.

--

--

Ethan Siegel

The Universe is: Expanding, cooling, and dark. It starts with a bang! #Cosmology Science writer, astrophysicist, science communicator & NASA columnist.