The fabric of spacetime, illustrated, with ripples and deformations due to mass. A new theory must be more than identical to General Relativity; it must make novel, distinct predictions. Image credit: European Gravitational Observatory, Lionel BRET/EUROLIOS.

Ripples In Spacetime: From Einstein To LIGO And Beyond

Gravitational waves and spacetime ripples have so much more to do with the Universe than just merging black holes.

Ethan Siegel
7 min readAug 10, 2017

--

“The years of searching in the dark for a truth that one feels but cannot express, the intense desire and the alternations of confidence and misgiving until one breaks through to clarity and understanding, are only known to him who has himself experienced them.” -Albert Einstein

For a scientist, it’s hard to imagine anything more exciting than being the first to discover something new. A new behavior; a new law of nature; a new kind of energy; a new way of looking at the Universe. When Einstein put forth his theory of General Relativity, it turned out to be all of those and more. After over 100 years, it’s arguably our most successful physical theory of all-time, having been tested and verified in a myriad of ways, with new avenues for investigation opening up all the time. Gravitational waves, detected for the first time less than two years ago, are the latest new window opened onto the Universe. In a sweeping new book, Ripples In Spacetime: Einstein, Gravitational Waves, and the Future of Astronomy, prolific science writer Govert Schilling has achieved the fascinating trifecta of historical and scientific accuracy, a grand sense of…

--

--

Ethan Siegel

The Universe is: Expanding, cooling, and dark. It starts with a bang! #Cosmology Science writer, astrophysicist, science communicator & NASA columnist.