Cyborg Science

I just started reading this book. Already hooked.

Because Jevons was grappling with issues of logic, simulation, and calculation, it is all too easy to paint him in retrospect as a budding cyborg; but now we can begin to entertain the notion that he was no such creature. The way to undertake the evaluation is to observe what he himself made of his machine. As a serious device for calculation, it was useless, as Jevons had been forced to admit. Not only would it run afoul of combinatorial explosions in even the most common concatenation of logical propositions, but, in the end, it was an instantiation of his own flawed system of logic (and not Boolean algebra, as has been suggested in some careless histories). It was equally superfluous as a pedagogical device, if only because it was not a machine for testing logical propositions; nor did it actually teach handy procedures for making logical inferences. So what was it good for? Here we should have recourse to Jevons’s faith in unified science and the importance of analogy for transporting the concepts of one developed science to its lesser developed cousins: as Mosselmans so deftly puts it, “the substitution of similars leads to a project of unified science” (1998, p. 89). It seems that Jevons really did believe in the practical similarity of logic and things or, to put it another way, that mind was directly reducible to matter, and therefore it followed that his logical piano provided a superior model for the mind. Thus what could not be retailed successfully in baywood and brass to logicians found a more receptive audience as political economy. The machine was ultimately used to fashion an abstract model of the economy: “The importance of the machine is of a purely theoretical kind.” Jevons reworked the levers of his logical piano into a theory of market equilibrium of equalized final degrees of utility explicitly patterned on the equilibrium law of the lever (1970, pp. 144– 47). “The theory of the economy, thus treated, presents a close analogy to the science of statistical mechanics, and the laws of exchange are found to resemble the laws of equilibrium of a lever” (1970, p. 144). The projection of a machine onto a portrait of mind could not have been more baldly wrought; but what is of particular salience for our narrative is that it was accomplished in such a ham-fisted fashion. The laws of thought so avidly sought in political economy turned out not to be his putative laws of logic, his propositions of the form AB = ABC, but rather the palpable physical laws of motion of the machine, which inscribed the laws of logic in bevels and levers. 14 To grasp the problem, consider a more modern parallel category mistake that misguidedly sought the “laws of thought” inscribed in modern computers in Kirchoff’s Law or Ohm’s Law, simply due to the observation that the personal computer runs on electricity.

Mirowski, Philip (2001–12–03). Machine Dreams: Economics Becomes a Cyborg Science (pp. 40–41). Cambridge University Press. Kindle Edition.

Show your support

Clapping shows how much you appreciated Adam Elkus’s story.