Manufacturing isn’t glamorous

Chris Gammell
May 12, 2017 · 7 min read

Think about people you graduated high school or college with. I bet they went off and became doctors, lawyers, marketers, salespeople and a range of other things, right? Some even be entrepreneurs, starting something brand new. Now answer this question:

How many of them started factories?

I am willing to bet more of them started food trucks.

It’s a lathe, not a path to salvation

There’s a lot of focus on hardware these days. Yes, it’s true that it’s easier than ever to get hardware designed and manufactured. No, it’s not true that it’s “easy” now.

I want to put a line in the sand and state something unequivocally: manufacturing is neither easy nor glamorous. No amount of flowery blog posts or meetups with high profile speakers will change that. And I love both. The truth is that it’s a grind getting your project out the door.

The people

  • Gets things done under pressure
  • Has attention to detail
  • Is dedicated to their work

So go ahead and hire a person who has successfully manufactured products…but don’t put the institution on a pedestal.

Why is manufacturing still hard?

Imagine a product that has a mechanical enclosure and one PCB mounted inside it (my go-to example). If one component is not available or working properly, it puts the entire device at risk. Not only that, you don’t control the entire process. Especially with electronics, you can’t walk down to the machine shop and re-do a part to fix the tolerance. No, you’re buying all your parts from external sources, each of them with their own internal design constraints and tolerances.

In the case where you are working on a mechanical piece and think you could just go and modify the part or create a new one, well…not quite. You need to have the material on hand to allow for that sort of thing. Even blocks of aluminum take time to order. Margins on machining aren’t particularly high either, so there’s little incentive to keep large amounts of stock on hand. And finally, assuming you have the means to create a modified part that instead goes into your assembly, you still need to do that over and over. What’s more, you need to track which units have the modified process as part of their assembly and track it for customer support and any issues that come up.

Though I’ve proposed an idea like Continuous Integration for manufacturing in the past, the tracking of those integrations can be almost as cumbersome as the change itself.

The pretense of glamour

Over time, I find myself looking back on my own time with rosy colored glasses. The benefits of being close to a manufacturing floor cannot be understated in terms of process and design innovation, but that is the subject of another article. For now, I want to catalog my past observations as a reference for myself and others.

Factories are dirty

It’s still very dependent upon people

The other thing about people is, they’re not so great. They are superstitious (“when I plug it in like this, it works…but not when I do this other thing”). They are stubborn (“I think we did it better before”). In short, they are human. Dealing with their every day problems is a reality and there is much an HR aspect to working with them as there is the practical “how to build this thing and get it out the door” aspect. Lack of repeatability in the process (likely with any humans “in the loop”) also can lead to lower quality products or higher customer returns due to mistakes.

The hours

The downside is that people working with manufacturing have to flow with the lack of boundaries this schedule carries. Emergency on the factory floor at 2 am? You’re going to get called. Used to coming in at a leisurely 9:30 am start time? Not when you have a shift change meeting to attend at 7 am. The hours are long and if you’re on salary, you’re viewed as someone who is “free” (they don’t pay anything more for you to be there at the 7 am and the 7 pm meeting, for better or worse).

There is no red carpet at the end

In manufacturing, there is no end. There is the next product that needs to start as soon as the last one is done.

What about the robots?

The trend of increasing robots on the factory floor will continue, but won’t change the glamour of the profession.

First off, a lot of the line will not be capable of replacing with a robot, at least not in the way that people envision it. Robots require a highly optimized process, which also means high volume to justify the costs. While there are lots of downsides to humans, their adaptability is another of their positive traits. Yes, you can get a Baxter robot, which is meant to do learn the “everything else” on a manufacturing floor. But those have many years until adoption.

The pick and place machine is another relevant robot that has been on the floor for many years. This machine has allowed countless electronics assemblies to be manufactured at high speeds. However, ask an operator of a pick and place machine to see just how “automated” it is. Once you have set up the machine, it can (in theory) run unfettered. But the reality is that it’s another piece of automation that generally speeds up the process but is far from automated. More on this below.

While a “lights out” factory is the holy grail of factory automation, those lights are off for a reason: because making of things still isn’t glamorous. It’s just something that has to get done.


As stated at the beginning, each additional component of an assembly represents another potential failure point. Risk is everywhere.

While the cost of failure is high, there are often thin margins in manufacturing, representing a need to seek cost reductions in any way possible. Each change from the originally specified part might be justified in terms of reducing cost, but that introduces another possible point of error. If a purchasing agent finds a good deal on a part and subsequently substitutes a 5% resistor when a 1% was needed, the product implications could be dire. The need for communication is crucial between all levels of an organization, from manufacturing floor, through purchasing, to the original design engineer.

You know what’s not a glamorous job? Approving 37 requests for swapping out resistors via email on a Monday morning.

It’s a grind, but that’s why it’s important


Discussing the business of hardware and hardware…