Uniswap V2
Intro.
在 2018 年 Uniswap 以一種趨近於 POC 的方式問世之後,2020 年 Uniswap V2 也被釋出,當前最新的版本則是 2021 釋出的 Uniswap V3。
在 Uniswap V2 運作的過程中,主要是由數個 ERC-20 代幣的交易對(Pairs)組成的 Liquidity Pool 組成。也就是說並不是交易者(Traders)一對一的進行交易,而是藉由 Uniswap 提供的 Route 將 traders 和 liquidity providers 導至 Liquidity Pool 進行各種交易。
Source: Uniswap V2 Overview
Comparison with V1
- Uniswap v2 contracts 是用 Solidty 而非 Vyper
- V1 中實際上沒辦法直接讓 ERC-20 和 ERC-20 進行互換,而是透過 ETH 作為中間者進行交易,V2 則可直接以 ERC-20 代幣之間的 Pair 進行 Swap。在 V1 中交易者要付更多的手續費(兩次),也需要承擔滑價的風險。
- 在 V2 中 ETH 被改以 Weth 取代。
- Flash Swap: 如果 User 可以負擔的起所有手續費和 Gas,那就可以直接提領所有 ERC-20 再在同一筆交易中把他們還回去,中間可以做一些特別的事情。
Role in V2
Uniswap Code Example in Solidity by Example
看完上述和 V1 的差別之後可以用以下這個極簡的程式碼例子快速了解一下差異。
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;contract TestUniswap {
address private constant UNISWAP_V2_ROUTER =
0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D;
address private constant WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2; function swap(
address _tokenIn,
address _tokenOut,
uint _amountIn,
uint _amountOutMin,
address _to
) external {
IERC20(_tokenIn).transferFrom(msg.sender, address(this), _amountIn);
IERC20(_tokenIn).approve(UNISWAP_V2_ROUTER, _amountIn); address[] memory path;
if (_tokenIn == WETH || _tokenOut == WETH) {
path = new address[](2);
path[0] = _tokenIn;
path[1] = _tokenOut;
} else {
path = new address[](3);
path[0] = _tokenIn;
path[1] = WETH;
path[2] = _tokenOut;
} IUniswapV2Router(UNISWAP_V2_ROUTER).swapExactTokensForTokens(
_amountIn,
_amountOutMin,
path,
_to,
block.timestamp
);
}
}interface IUniswapV2Router {
function swapExactTokensForTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);
}interface IERC20 {
function totalSupply() external view returns (uint); function balanceOf(address account) external view returns (uint); function transfer(address recipient, uint amount) external returns (bool); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint amount) external returns (bool); function transferFrom(
address sender,
address recipient,
uint amount
) external returns (bool);
}
Contract Breakdown
V2 的主要功能有管理資金、交易代幣、流動性抵押與獲得報酬、管理 Pool 中的治理代幣、協議手續費。除了以上的主要功能 Uniswap V2 的 Price Oracle,可以讓以太坊上的其他合約調用到這些代幣蠻真實的市場價格。
Code 的部分主要由四個合約組成,分成兩個主要部分:Core 和 Periphery。
- Core: 主要用來儲存 Funds 和提供可使用的函式,包含以下:
- Pair — 是一個實作 swapping, minting, burning tokens 的合約,每一個 ERC-20 代幣交易對都會有一個
Pair Contract
- Factory — 用於創建和儲存所有 Pair Contract 的紀錄
- ERC20 — 記錄每一個 Pool 的資訊,當 liquidity providers 將資金投入 pool 之後,他們就會得到 “pool ownership tokens”,也就是
LP tokens
作為獎勵。當 liquidity providers 想要贖回他們在 pool 中的資金,只要把這些LP tokens
交回就可以得到原本的資金還有額外累積的獎勵報酬。
- Periphery: 主要用於和 Core 進行互動:
- Router — 提供一些和 Core 互動與連結的函式,例如
addLiquidity
,swapExactETHForTokens
,swapETHForExactTokens
等。
Core — Pair
pragma solidity =0.5.16;import './interfaces/IUniswapV2Pair.sol';
import './UniswapV2ERC20.sol';
import './libraries/Math.sol';
import './libraries/UQ112x112.sol';
import './interfaces/IERC20.sol';
import './interfaces/IUniswapV2Factory.sol';
import './interfaces/IUniswapV2Callee.sol';contract UniswapV2Pair is IUniswapV2Pair, UniswapV2ERC20 {
using SafeMath for uint;
using UQ112x112 for uint224; uint public constant MINIMUM_LIQUIDITY = 10**3;
bytes4 private constant SELECTOR = bytes4(keccak256(bytes('transfer(address,uint256)')));
首先是宣告版本、Import 套件,以及宣告合約、繼承和宣告常數(例如 0.3% fee per trade),比較特別的有兩個:IUniswapV2Pair
是一個可用於管理 LP Token 的 Interface,和 UQ112x112
是用於支援 FixedPoint 的 SafeMath Library。
function _safeTransfer(address token, address to, uint value) private {
(bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value));
require(success && (data.length == 0 || abi.decode(data, (bool))), 'UniswapV2: TRANSFER_FAILED');
}
此外,SELECTOR
則是未來在以 call
進行 Low-Level 呼叫時會使用到的常數。
address public factory;
address public token0;
address public token1; uint112 private reserve0; // uses single storage slot, accessible via getReserves
uint112 private reserve1; // uses single storage slot, accessible via getReserves
uint32 private blockTimestampLast; // uses single storage slot, accessible via getReserves uint public price0CumulativeLast;
uint public price1CumulativeLast;
uint public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event
程式碼中以 Token0
和 Token1
呈現兩個代幣,reserve0
和 reserve1
則是代表 Pair 中還剩下多少。簡單來說 reserve0
就是 balanceOf(token0)
。有相關的 Getter Function:
function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) {
_reserve0 = reserve0;
_reserve1 = reserve1;
_blockTimestampLast = blockTimestampLast;
}
而這個 reserve
將會在之後的 _update()
於每一個 block 和 price accumulators 時更新。 比較重要的是裡面檢查 overflow 的實作方式,以及節省 gas 的方式:使用 _reserve
而非 reserve
。
// update reserves and, on the first call per block, price accumulators
function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) private {
require(balance0 <= uint112(-1) && balance1 <= uint112(-1), 'UniswapV2: OVERFLOW');
uint32 blockTimestamp = uint32(block.timestamp % 2**32);
uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired
if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {
// * never overflows, and + overflow is desired
price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed;
price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed;
}
reserve0 = uint112(balance0);
reserve1 = uint112(balance1);
blockTimestampLast = blockTimestamp;
emit Sync(reserve0, reserve1);
}
其中這個部分就是實作 Price Oracle 的程式碼,簡單來說就是利用兩點之間的差來除以 timeElapsed
:
uint32 blockTimestamp = uint32(block.timestamp % 2**32);
uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired
if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {
// * never overflows, and + overflow is desired
price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed;
price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed;
}
想要更深入了解 Price Oracle 可以看這個超棒的教學:Uniswap V2 Price Oracle | DeFi
接下來我們看 Minting
和 Burning
,我們會發現這些函式與 Swap
的最後都會進行 _update
更新。
當 Liquidity Provider 將資金投入 Pool 之後,Mint
函式就會被啟動用於鑄造 LP Token(pool ownership tokens)。反之當 Liquidity Provider 想要將資金提領出來時,就會起動 Burn
來將其 LP Token 燒毀。
// this low-level function should be called from a contract which performs important safety checks
function mint(address to) external lock returns (uint liquidity) {
(uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
uint balance0 = IERC20(token0).balanceOf(address(this));
uint balance1 = IERC20(token1).balanceOf(address(this));
uint amount0 = balance0.sub(_reserve0);
uint amount1 = balance1.sub(_reserve1); bool feeOn = _mintFee(_reserve0, _reserve1);
uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
if (_totalSupply == 0) {
liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY);
_mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens
} else {
liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1);
}
require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED');
_mint(to, liquidity); _update(balance0, balance1, _reserve0, _reserve1);
if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
emit Mint(msg.sender, amount0, amount1);
}
在 Mint
Function 中 liquidity
代表將要被鑄造給 Liquidity Provider 的 LP Token 數量。當 Provider 想要投注資金到 Pool 時會呼叫:transfer(from: liquidity provider’s address, to: Pair contract’s address, amount)
。
Burn
則是 Mint
的鏡像。
// this low-level function should be called from a contract which performs important safety checks
function burn(address to) external lock returns (uint amount0, uint amount1) {
(uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
address _token0 = token0; // gas savings
address _token1 = token1; // gas savings
uint balance0 = IERC20(_token0).balanceOf(address(this));
uint balance1 = IERC20(_token1).balanceOf(address(this));
uint liquidity = balanceOf[address(this)]; bool feeOn = _mintFee(_reserve0, _reserve1);
uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution
amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution
require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED');
_burn(address(this), liquidity);
_safeTransfer(_token0, to, amount0);
_safeTransfer(_token1, to, amount1);
balance0 = IERC20(_token0).balanceOf(address(this));
balance1 = IERC20(_token1).balanceOf(address(this)); _update(balance0, balance1, _reserve0, _reserve1);
if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
emit Burn(msg.sender, amount0, amount1, to);
}
Swap
用於給 Traders 進行代幣 swap,裡面節省 Gas 的方式很適合學習。
// this low-level function should be called from a contract which performs important safety checks
function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock {
require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT');
(uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY'); uint balance0;
uint balance1;
{ // scope for _token{0,1}, avoids stack too deep errors
address _token0 = token0;
address _token1 = token1;
require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO');
if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens
if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens
if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data);
balance0 = IERC20(_token0).balanceOf(address(this));
balance1 = IERC20(_token1).balanceOf(address(this));
}
uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0;
uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0;
require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT');
{ // scope for reserve{0,1}Adjusted, avoids stack too deep errors
uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3));
uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3));
require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K');
} _update(balance0, balance1, _reserve0, _reserve1);
emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);
}
在每一個 Pair Contract 裡面都會有一個能夠 on/off 的 Protocol Fee 機制存在,Traders 會付出六分之一的手續費。
// if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k)
function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) {
address feeTo = IUniswapV2Factory(factory).feeTo();
feeOn = feeTo != address(0);
uint _kLast = kLast; // gas savings
if (feeOn) {
if (_kLast != 0) {
uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1));
uint rootKLast = Math.sqrt(_kLast);
if (rootK > rootKLast) {
uint numerator = totalSupply.mul(rootK.sub(rootKLast));
uint denominator = rootK.mul(5).add(rootKLast);
uint liquidity = numerator / denominator;
if (liquidity > 0) _mint(feeTo, liquidity);
}
}
} else if (_kLast != 0) {
kLast = 0;
}
}
實際計算 Protocol Fee 的公式可以在白皮書中找到:
其中 kLast
是乘積函式中的常數 K。
lock
會確保合約中的兩個部分不會被同時執行,也就是防範 Eeentrancy Attack。
uint private unlocked = 1;
modifier lock() {
require(unlocked == 1, 'UniswapV2: LOCKED');
unlocked = 0;
_;
unlocked = 1;
} // force balances to match reserves
function skim(address to) external lock {
address _token0 = token0; // gas savings
address _token1 = token1; // gas savings
_safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0));
_safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1));
} // force reserves to match balances
function sync() external lock {
_update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1);
}
skim
和 sync
用於更新 Reserve 變數和避免有人無目的的把資金轉入合約(用於提領多餘的資金)。
Core — ERC20
其實就是一個 ERC-20 的介面標準,用於 liquidity providers 鑄造、燒毀或者獲得額外報酬的 LP Token。
Core — Factory
創建一個 Token A 和 Token B 的 Pair Contract,創建的方法是使用 create2(0, add(bytecode, 32), mload(bytecode), salt)
。
function createPair(address tokenA, address tokenB) external returns (address pair) {
require(tokenA != tokenB, 'UniswapV2: IDENTICAL_ADDRESSES');
(address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
require(token0 != address(0), 'UniswapV2: ZERO_ADDRESS');
require(getPair[token0][token1] == address(0), 'UniswapV2: PAIR_EXISTS'); // single check is sufficient
bytes memory bytecode = type(UniswapV2Pair).creationCode;
bytes32 salt = keccak256(abi.encodePacked(token0, token1));
assembly {
pair := create2(0, add(bytecode, 32), mload(bytecode), salt)
}
IUniswapV2Pair(pair).initialize(token0, token1);
getPair[token0][token1] = pair;
getPair[token1][token0] = pair; // populate mapping in the reverse direction
allPairs.push(pair);
emit PairCreated(token0, token1, pair, allPairs.length);
}
Periphery — Router
Source: Uniswap/v2-periphery
Periphery contract 是 Uniswap 的 API,當然我們也可以直接呼叫 Core Contract 只是那將會非常麻煩(和危險)。裡面會實作許多 User 會遇到的函式,例如:adding/removing liquidity 和 swapping tokens。
為了要避免搶先交易的問題,V2 實作了 amountOutMin
和 deadline
兩個參數在函式中。當某些情況發生時,例如 Front Running Problem 或者競爭條件(race condition)發生,導致數量低於特定的 amountOutMin
時,或者交易在 deadline
block 之後才發生,這個交易就會被 revert
並且不會有任何代幣被轉移。
Reference
最後歡迎大家拍打餵食大學生
0x2b83c71A59b926137D3E1f37EF20394d0495d72d