Five Trends to Look for in Governing Data, in 2021, for Digital-Driven Business Outcomes

Tejasvi Addagada
The Startup
Published in
10 min readJan 3, 2021

Formalizing Data Collection from customers and third parties

To date, the organizations have focussed on formalizing data consumption practices through distribution technology, access-based delivery mechanisms for analytics, and AI functions. However, with data protection laws and positive awareness across the world, firms have extended the formalization to data collection management. This in-fact is the first life-cycle stage of data.

1.1. Managing data quality at sources: Across the multitude of native and digital channels, harmonizing data quality rules will bring consistency in sourcing correct customer data. There will be an increase in the use of AI-based discovery of data rules that will make it much easier for data offices to achieve the scale of fixing bad data. To quote an example — Validity rules for mobile numbers can be consistent across all channels that curate this data from customers and partners. This approach removes ambiguity in monitoring for quality even though data is siloed.

An operating model view for data quality management

a. Measuring Accuracy using AI https://www.dattamza.org/dattamza-blog/is-measuring-data-accuracy-possible-can-artificial-intelligence-techniques-make-this-possible

Use of Artificial Intelligence models in finding accuracy of data

Clean Data is a crucial need to get an outcome from machine learning capabilities. Scale and diversity in data is also another important aspect.

b. Data Quality and Data Governance can Maximize Your AI Outcomes https://www.dattamza.org/dattamza-blog/data-quality-and-data-governance-can-maximize-your-ai-outcomes

1.2. Classifying & Labelling legitimate Data: An important aspect is classifying data that is curated from customers or third-parties as private and zero-copy data. Data protection best practices suggest minimizing data curated from customer to reduce the threat surface area for data security risk.

1.3. Extended Trust to customers: However, as trust builds up with customers, they would be forth-coming to provide you additional zero-copy data to improve the services and products they receive. For example, If I am traveling to Europe, I will be providing my dates of travels, places of travel to my bank that enables the bank to provide me a forex card as well as enabling international transactions and increasing limits on cards.

1.4. Ownership & Stewardship: A successful data ownership should traverse divisional siloes. Data Ownership is often not a full-time job for most data owners while it can be a full-time profession for Data Stewards. We can see an increased focus in organizations to enable full-time stewards.

At the outset, the context to data should also be recorded by stewards and owners in a central namespace like Catalog. Data Governance is a methodology that helps implement individual and shared ownership of data across the organization. Often without context to a data element, it can be non-relevant to consumers to provide AI & Analytical models.

a. Deriving accountability for privacy will be an enabler https://www.dattamza.org/dattamza-blog/customer-data-protection-deriving-value-and-ownership

2. Increased data awareness and Literacy

Knowledge of data-in-context, data processes, best techniques to provision, as well as tools enabling these methods of self-service is crucial to democratize data. However, with technology advancements including virtualization, self-service discovery catalogs, data delivery mechanisms, the internal data consumers can shop and provision for data in shorter cycles. In 2020, it took organizations anywhere between a week to 3 weeks to provision complex data that includes integration from multiple sources.

Also, an increase in data awareness will help data consumers explore further available dark data that can provide predictive insights to create new user-stories that can propel customer journeys.

2.1. Measuring benefits from data management and aligning to value-chains: The lack of focus is common across organizations as they assume data governance as an extension of either compliance or a risk function. Data Literacy will in-fact change the attitude of business owners towards having to actively manage and govern data. There are immediate and cumulative benefits from actively governing data either by defining data or fixing bad quality data. But there is a need for a value-realization framework to actively manage the benefits of data management services.

a. Value realization in Data Management: https://www.dattamza.org/dattamza-blog/linking-data-governance-to-benefits-in-business-value-chains

A view of Data governance value model — enablers and value management

2.2. Data Ethics: Blending data privacy and data sharing can bolster innovation in the business ecosystems while un-locking the economic value of data. The first step for any start-up or a well-established organization is to build a controlled environment that can well govern and manage data. This activity will further cascade trust in the internal data hosted by various functions like marketing and create a culture of sharing for ‘digital & customer-centricity’.

As Data Governance is known to have a cascading positive impact on Corporate Governance, at the same time, people outside the organization start trusting the organization as stewards of their data. A well-matured organization can be called a ‘data trust’ where the control of data is held by its customers. Though organizations are either controllers or processors of data — the group can be viewed as having an ethical element in having a fiduciary duty to maintaining the integrity of people’s data.

With an increased focus on data protection and Governance policy in governments, awareness of these methodologies will assist in preparedness for compliance with the laws.

2.3. Data Protection: Harmonizing data privacy and data sharing can bolster innovation in the business ecosystems while un-locking the economic value of data. The first step for any start-up or a well-established organization is to build a controlled environment that can well Govern and Manage data. This activity will further cascade trust in the internal data hosted by various functions like Marketing and create a culture of sharing for ‘digital-centricity’.

Balancing Data Discovery and Data protection in an organization for optimum outcomes

a. Governing data will bolster digital transformation https://www.dattamza.org/dattamza-blog/data-governance-can-not-only-bolster-digital-transformation-but-can-produce-data-trusts-for-people

A cultural model in an organization to attain a state of Data-Fidicuary

Consumers have already started embracing digital handshakes with marketers at a rate even faster than the previous year. U.S. consumers have spent more than $66 billion online in July 2020, 55% more than one year earlier.

b. https://www.dattamza.org/dattamza-blog/democratizing-data-on-the-heels-of-protection-is-the-new-normal-for-better-marketing-outcomes

Democratizing data from disparate sources to enable discovery and applying data for AI & Analytics models

2.4. Use of AI in data protection: The development of Artificial Intelligence and Data Protection domains are largely dependent on the economic and societal needs. While Artificial Intelligence develops better customer services by wrangling trillions of BigData and learning from it, data protection is poised to build trust in people to share data with Organizations. A recent survey from Gartner showed that over 40% of privacy compliance technology will rely on AI by 2023

a. AI in privacy improved customer trust https://www.dattamza.org/dattamza-blog/artificial-intelligence-in-data-privacy-and-protection-can-increase-customer-trust

Advancements in Chief Data Offices to formalize data protection management

3. Data Distribution Management

There is merit in having to drive events in customer journeys based on insights derived by a deep-learning model that crunches real-time data. This requires data being pipelined in real-time rather than mini-batches or batches to a data lake or a cloud warehouse to run artificial intelligence models.

A simple question you would want to ask — Do you want to process streams of data before a state of an application changes or are you Okay with pipelining data into a lake or warehouse to derive insights within a timeframe like 15–30 minutes.

While we break this down — Data Architecture and Engineering are associated with having the right stack available while satisfying security requirements to move data internally through Batch, Real-Time with low latency, Semi-real time with acceptable latency.

a. Governing Data Architecture for better outcomes https://www.dataversity.net/governing-data-architecture-to-achieve-success/

Relevant data architecture views in enterprise architecture

Another example — while a customer fills up data on an application form for a home loan, a back-propagation model that uses real-time data can drive decisions based on demography like a flood-insurance or a fire-insurance or prompting for other protection plans. Or it can in-fact predict fraud or Typos from customers in certain co-related data like Income or place of work.

The below enablers or processes of data management are the focus areas to have an impact on data distribution gaps.

a. Data Delivery Management — How is data being delivered from sources?

b. Platform Governance — Are there processes that make storage policy-relevant along with costs?

c. Data Provisioning — Are sources of truth certified across the landscape?

d. Metadata & meaning of data — Is there a unified data-fabric or a Business Information model to build confidence through standards?

e. Integration Management — Are common standards & Canonical models leveraged?

f. Data Availability — Is Data Discoverable by rightful consumers with ease?

Gartner predicts that by 2023, organizations can accelerate time to integrated delivery by 30 percent by employing data fabrics

3.1. Platform Governance: In the past few months, Firms have accelerated digital transformation across multiple journeys of on-boarding and servicing customers. This has been possible by integrating and aggregating Multi-sources as well as taming the ‘Data Swamps’ to deliver quality data.

Platform Governance is the mantra to a healthy delivery of Big-Data and native data platforms. An increased number of platforms including native data-warehouses, data lakes, cloud-warehouses that are being fuelled by cost parameters for compute and storage has increased the complexity of platform teams.

A formalized methodology is required to maintain authorized provisioning sources, integration methodology, redundancy maintenance, and other use-cases like deleting specific instances of customer data.

a. What is Platform Governance and How does it differ from Data Governance: https://www.dataversity.net/how-does-data-governance-differ-from-data-platform-governance/

4. Future-proofing businesses with data strategy

Analyzing the Data & Digital strategy of the organization at intervals of change to organizational strategy will assist the alignment of benefits.

The below Data related goals have been identified as being related to the organizational Goal

a. Availability of reliable and useful data for decision making — internal balanced scorecard Dimension

b. Adequate use of data, and technology solutions — Customer balanced scorecard Dimension

c. Realized benefits from data-enabled investments and services portfolio — Financial balanced scorecard Dimension

A maturity assessment model can be a perfect tool for data strategy analysis

Data management maturity levels — traversing from risk-based to value-based maturity

For example, On performing a maturity assessment of the current state, the below problem statements can be elicited.

a. Data collections, analytics, and decisions in value chains are often time-consuming and expensive

b. Data is a core factor of input into every business process and are supported by applications. Data Collection, Access, and Delivery dependencies must be defined and verified across the organization.

a. Conducting a Maturity Assessment for your organization to assess the current state of Landscapehttps://www.dataversity.net/data-governance-maturity-assessment-model/

Comparing maturity models in the Industry

b. Creating a data strategy in alignment with digital goals https://www.dattamza.org/dattamza-blog/creating-a-data-strategy-in-alignment-with-digital-tranformation-goals-of-an-enterprise

Publishing data strategy by formalizing data capabilities through programs in the operational roadmap

Today’s data landscapes in enterprises are increasingly based on core principles of Data Discovery, Right Data Interpretation, Coverage, Availability, and interoperability.

c. The shift in focus of Data Management principles — https://www.dataversity.net/shift-in-core-principles-of-data-management-in-todays-digital-economy/

5. Governing data on modern cloud

Governing data involves having to create a control-environment if your change-strategy is regulatory-driven. Else, it is about creating an enabling environment that assists the organization in monetizing data for benefits. Moreover, the prime focus of leadership must be understanding the business value of data governance on the cloud. Most organizations will prefer a hybrid-cloud set-up as a popular choice. With this popular mix of data spread across multiple cloud providers including Azure, AWS, GCP as well as on-premises traditional systems — governing data becomes even more important. Each cloud provider will maintain its catalog and integrating them with the enterprise Catalog using a push model will be a relevant choice. Data security in hybrid-cloud is an evolving area with guidance evolving on the best approaches to encrypt and anonymize data.

IDC predicts that by 2021, over 90% of enterprises in APAC will rely on a mix of on-premises as well as private & public clouds, and legacy platforms to meet their infrastructure needs.

a. Five steps to data governance on Cloud — https://www.dattamza.org/dattamza-blog/data-governance-on-cloud-5-steps-to-successful-data-management

Data Governance on cloud data storage

--

--

Tejasvi Addagada
The Startup

Tejasvi Addagada is a data strategist and consultant assisting fortune 500 firms. He helps to build and optimize data management and governance solutions.