How Netflix uses AI for content creation and recommendation

The power of recommendations

Vinod Kathayat
Sep 18, 2019 · 3 min read
Image for post
Image for post

There’s no such thing as a ‘@Netflix show.’ That as a mind-set gets people narrowed. Our brand is personalization.” (Ted Sarandos: Chief Content Officer at Netflix)

Netflix’s core competency in data science enables the personalization of the streaming experience based on user behavior. Netflix classifies and tags content to get a nuanced view of consumer preferences. Netflix has developed over 1,000 tag types that classify content by genre, time period, plot conclusiveness, mood, etc. These tags help to define micro-genres, which, by 2014, had already reached 76,897. Content micro-classification, combined with a proprietary recommendation engine, enables Netflix to serve better customer experience. About 75% — 80% of viewer activity is influenced by the recommendation algorithm

Netflix also tracks viewing habits of its subscriber base from the early beginning and created almost 2000 clusters, so-called “taste communities”.

Traditional TV networks use standard demographic ratings such as age, race or location for their market segmentation. Netflix instead tracks viewing habits of its subscriber base from the early beginning and created almost 2000 clusters, so-called “taste communities”.

Netflix’s Senior Data Scientist, Mohammad Sabah stated in 2014:

“75 percent of users select movies based on the company’s recommendations, and Netflix wants to make that number even higher.”

These recommendations are powered by algorithms that are based on the assumption that similar viewing patterns represent similar user tastes. The taste communities play an instrumental role in these recommendation algorithms. We didn’t come out of the gate and say, ‘We think Black Mirror is for this audience or not for that audience’. But after we launched the show, we were able to see the patterns. The chart showed how folks who liked Black Mirror were also fans of Lost and Groundhog Day. On the surface, if you thought about Groundhog Day with Black Mirror, you might not find an obvious similarity.”

But the recommendation algorithms go beyond the “taste” criterion. Netflix also includes contextual criterion to find the perfect recommendation for each user at each moment.

We have data that suggests that there the viewing behavior differs depending on the day of the week, the time of day, the device, and sometimes even the location. Most internet companies use batch processing for personalization use cases such as recommendations, but Netflix realized that this was not quick enough for time-sensitive scenarios such as new title launch campaigns or strong trending popularity cases. They moved to a near-real-time (NRT) recommendation process to accelerate the learning process and roll out test results.

Netflix sets themselves apart from traditional media companies not only by what they recommend but how they recommend it to their members. A key feature is an image they use to promote each movie or TV show, or the so-called artworks. Netflix aims to provide the artwork for each show that highlights the specific visual clue that is relevant for each individual member. For each new title, different images are randomly assigned to different subscribers, using the taste communities as an initial guideline. This translates into hundreds of millions of personalized images continuously being tested among its subscriber base. For the creation of the artwork, machine learning also plays a critical role; thanks to a computer vision algorithm that scans the shows and picks the best images that will be tested among the taste communities.

Netflix does not limit the success or failure of a show to the size of its audience. Shows with a smaller audience but low production costs can also remain profitable. John Ciancutti, former VP of Product Engineering summarised the key criteria for content selection as follows:

Netflix seeks the most efficient content. Efficient here means content that will achieve the maximum happiness per dollar spent. There are various complicated metrics used, but what they are intended to measure is happiness among Netflix members.

Clevered forges partnership with its students well beyond their training helping them with guidance and business outreach.

At Clevered, we offer various Bootcamp Programs specially designed to cater to all your queries and aspirations. We understand the need of the hour and our subject matter experts are committed to providing abled guidance and knowledge for you to grow in your respective ambitions.

The Startup

Medium's largest active publication, followed by +729K people. Follow to join our community.

Medium is an open platform where 170 million readers come to find insightful and dynamic thinking. Here, expert and undiscovered voices alike dive into the heart of any topic and bring new ideas to the surface. Learn more

Follow the writers, publications, and topics that matter to you, and you’ll see them on your homepage and in your inbox. Explore

If you have a story to tell, knowledge to share, or a perspective to offer — welcome home. It’s easy and free to post your thinking on any topic. Write on Medium

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store