How to Hide Your Feelings From AI Voice Assistants

Synced
Synced
Aug 21, 2019 · 3 min read
Image for post
Image for post

No matter whether the conversations commence with “Ok, Google”, “Hello Alexa”, or “Hey Siri”, tech giants Apple, Amazon, Facebook, Google and Microsoft have all granted third-party contractors access to their users’ many interactions with voice assistants.

Voice-controlled IoT services are experiencing unprecedented popularity thanks to advancements in AI technologies such as speech recognition and natural language processing. Voice assistants are deeply integrated into our daily lives, on devices with sophisticated microphone arrays that are ever-listening for wake commands.

Users’ voice data content is sufficiently rich to allow AI systems to build accurate profiles and predictions based on confidence and stress levels, physical condition, age, gender, and even personality. Some online recommendation systems can even provide product or restaurant suggestions based on the speaker’s emotions. But amid rising public concerns that service providers might exploit these insights to violate user privacy, efforts are being made to protect privacy while maintaining the quality and convenience of personalized services.

A team of researchers from Imperial College London has now offered a solution. In the paper Emotionless: Privacy-Preserving Speech Analysis for Voice Assistants, researchers propose adding a privacy-preserving intermediate layer between users and cloud services. They say the method “serves as a wrapper of the emotional part of the voice input to prevent service providers from monitoring users’ emotions associated with their speech.

In a bid to purge real-time speech data of such sensitive representations before it is shared with service providers, researchers identified sensitive representations in the raw signals, then leveraged voice conversion technology to remove emotion and health state information without damaging other useful indicators. At the heart of the speech analysis approach to learning sensitive representations is CycleGAN, which is responsible for extracting features such as F0 counter, spectral envelope, and aperiodic information. The state-of-the-art vocoder WORLD then uses the output to re-generate the voice files.

Image for post
Image for post
Image for post
Image for post

Tests on speech files processed via this method showed a dramatic 96 percent drop in emotion recognition accuracy. This however came with a trade-off, as speech recognition accuracy based on average word error rate correspondingly fell by 35 percent. Researchers suggest these results could be improved by increasing the training epoch.

With today’s intelligent voice systems increasingly capable of not only semantic understanding but also the capture and analysis of sensitive representations, the Imperial College London research presents an interesting new path for preserving privacy without compromising the rapidly growing potential of voice-based human-machine interfaces.

The paper Emotionless: Privacy-Preserving Speech Analysis for Voice Assistants is on arXiv.

Journalist: Fangyu Cai | Editor: Michael Sarazen

We know you don’t want to miss any stories. Subscribe to our popular Synced Global AI Weekly to get weekly AI updates.

Image for post
Image for post

Need a comprehensive review of the past, present and future of modern AI research development? Trends of AI Technology Development Report is out!

2018 Fortune Global 500 Public Company AI Adaptivity Report is out!
Purchase a Kindle-formatted report on Amazon.
Apply for Insight Partner Program to get a complimentary full PDF report.

Image for post
Image for post

SyncedReview

We produce professional, authoritative, and…

Synced

Written by

Synced

AI Technology & Industry Review — syncedreview.com | Newsletter: http://bit.ly/2IYL6Y2 | Share My Research http://bit.ly/2TrUPMI | Twitter: @Synced_Global

SyncedReview

We produce professional, authoritative, and thought-provoking content relating to artificial intelligence, machine intelligence, emerging technologies and industrial insights.

Synced

Written by

Synced

AI Technology & Industry Review — syncedreview.com | Newsletter: http://bit.ly/2IYL6Y2 | Share My Research http://bit.ly/2TrUPMI | Twitter: @Synced_Global

SyncedReview

We produce professional, authoritative, and thought-provoking content relating to artificial intelligence, machine intelligence, emerging technologies and industrial insights.

Medium is an open platform where 170 million readers come to find insightful and dynamic thinking. Here, expert and undiscovered voices alike dive into the heart of any topic and bring new ideas to the surface. Learn more

Follow the writers, publications, and topics that matter to you, and you’ll see them on your homepage and in your inbox. Explore

If you have a story to tell, knowledge to share, or a perspective to offer — welcome home. It’s easy and free to post your thinking on any topic. Write on Medium

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store