Moving Camera, Moving People: Google AI’s Deep Learning Approach to Depth Prediction

Synced
Synced
May 24 · 3 min read

Google AI has introduced a deep learning based approach that generates depth prediction from videos where both camera and subject are in motion.

Humans are very good at making sense of the 3D world through 2D projections. Watching a movie screen for example we can guestimate the relative positions of pedestrians, buildings and boulevards. Even in complex environments with objects in motion we can still form a fairly sound understanding of where everything is. Computer vision however does not do so well in this regard. Researchers in the field have long sought to develop a mechanism capable of achieving 3D world understanding by reconstructing geometry and depth ordering from 2D image data via computation.

Computer vision models struggle most when both camera and objects in a scene are in motion. The freely moving camera and objects confuse conventional 3D reconstruction algorithms since the traditional approach assumes the same object can be observed from more than one viewpoint at the same time, enabling triangulation. The assumption requires either a multi-camera array, or that all objects remain stationary while one camera moves through the scene.

The Google AI researchers used 2,000 “Mannequin Challenge” YouTube videos to train an AI model. A viral trend in 2016, these videos see groups of people acting like frozen characters in the film The Matrix, while a camera person moves through and records the scene. By learning priors on human poses and shapes from the data, the model can perform accurate dense depth prediction on motion-motion videos without traditional direct 3D triangulation. Researchers focused on depth prediction for humans as humans tend to feature prominently in related applications such as augmented reality, and human motion is relatively difficult to model.

In a blog post, Google AI researchers point out the method’s innovation: “While there is a recent surge in using machine learning for depth prediction, this work is the first to tailor a learning-based approach to the case of simultaneous camera and human motion.” The research is receiving attention on social media.

The paper Learning the Depths of Moving People by Watching Frozen People is on ArXiv.


Journalist: Fangyu Cai | Editor: Michael Sarazen


2018 Fortune Global 500 Public Company AI Adaptivity Report is out!
Purchase a Kindle-formatted report on Amazon.
Apply for Insight Partner Program to get a complimentary full PDF report.


Follow us on Twitter @Synced_Global for daily AI news!


We know you don’t want to miss any stories. Subscribe to our popular Synced Global AI Weekly to get weekly AI updates.

SyncedReview

We produce professional, authoritative, and thought-provoking content relating to artificial intelligence, machine intelligence, emerging technologies and industrial insights.

Synced

Written by

Synced

AI Technology & Industry Review — syncedreview.com | Newsletter: goo.gl/Q4cP3B | Become Synced Insight Partner: goo.gl/ucXZDw | Twitter: @Synced_Global

SyncedReview

We produce professional, authoritative, and thought-provoking content relating to artificial intelligence, machine intelligence, emerging technologies and industrial insights.