What Does ‘Broken’ Sound Like? First-Ever Audio Dataset of Malfunctioning Industrial Machines

Oct 1 · 3 min read

“Cough for me…” In a routine physical checkup, a doctor may press a stethoscope against a patient’s chest and use the sound of a cough to detect any abnormal respiratory conditions. Now, an R&D team from Japanese multinational conglomerate Hitachi has proposed a similar, sound-based technique for identifying malfunctioning industrial machines on a factory floor.

Hitachi researchers have released a first-of-its-kind dataset comprising sounds of functioning and malfunctioning industrial machines in real factory environments. The dataset is designed to aid in the development of acoustic detection techniques, and is introduced in the paper MIMII Dataset: Sound Dataset for Malfunctioning Industrial Machine Investigation and Inspection.

The MIMII dataset classifies sounds into four major machine types: valves, pumps, fans, and slide rails, with samples from different machine models included in each category. There are a total of 26,092 ten-second sound files of machines in normal operating conditions, and 6,065 sound files of machines struggling under abnormal conditions. Researchers used only the normal machine operation sounds during the training phase, then introduced the anomalous sounds during the testing phase.

Researchers positioned a circular array of eight microphones at distances of 10–50cm to record the machine sounds in various real factories, processing the 10-second recordings as 16-bit audio signals sampled at 16 kHz. Because factories are not libraries, researchers had to deal with plenty of background noise, which they isolated and later mixed with the target machine sound to simulate real world conditions. The sound files are stored in the standard .WAV audio format.

Because every machine has its particular sound characteristics — even within a class or model type — researchers employed an autoencoder-based unsupervised anomaly detector. Researchers noted for example the sound signals of valves are “impulsive and sparse in time” which makes valve anomaly detection challenging compared to the relatively static and continuous sound signals of fans, which can more quickly and effectively expose anomalies. Researchers propose reducing detection degradation caused by non-static machines and factory background noise as areas for further study in unsupervised anomalous sound detection.

The MIMII dataset of machine sounds and factory background noise is the first to provide solutions for detecting anomalous conditions in industrial machinery via sounds, and has been open-sourced on Zenodo.

The paper MIMII Dataset: Sound Dataset for Malfunctioning Industrial Machine Investigation and Inspection is on arXiv.

Journalist: Fangyu Cai | Editor: Michael Sarazen

We know you don’t want to miss any stories. Subscribe to our popular Synced Global AI Weekly to get weekly AI updates.

Need a comprehensive review of the past, present and future of modern AI research development? Trends of AI Technology Development Report is out!

2018 Fortune Global 500 Public Company AI Adaptivity Report is out!
Purchase a Kindle-formatted report on Amazon.
Apply for Insight Partner Program to get a complimentary full PDF report.


We produce professional, authoritative, and thought-provoking content relating to artificial intelligence, machine intelligence, emerging technologies and industrial insights.

Welcome to a place where words matter. On Medium, smart voices and original ideas take center stage - with no ads in sight. Watch
Follow all the topics you care about, and we’ll deliver the best stories for you to your homepage and inbox. Explore
Get unlimited access to the best stories on Medium — and support writers while you’re at it. Just $5/month. Upgrade