Guesstimate with Different DistributionsAs several Guesstimate users noted, it’s very difficult to talk for negative minutes. A…
Shrinking the Bell CurveProbability distributions are incredible useful tools, but are hard to grapple with intuitively. Often, seemingly benign questions can have very surprising results. With Guesstimate, these questions can be rapidly explored, exposing unexpected facets of statistics mathematically…
The lottery and the laughing shopkeeperI was mocked for my mathematical approach to lottery numbers. Allow me to explain myself.
How to React to the News Nowadays using Bayesian ApproachOne day, you have graduated from high school and will continue to higher degree. Of course you should have a choice to choose at least one major from a certain college. You also want to be success. There are many possibilities…
확률의 개념확률현상은 불확실성에 대해 좌우되는 현상이다. 확률현상에 대해 현실에서 실험하는 것을 확률실험(ε)이라고 한다. 확률현상에서 얻어질 수 있는 모든 결과를 표본공간(Ω) 이라고 한다. 또한 표본공간의 부분집합을 확률사건(E,Event)라고 한다. 한 확률실험에서 ‘어떤 사건이 일어나리라고 예측되는 정도를 나태내는 수치'를 그 사건이 일어날 확률이라고 한다.확률의 3공리
That Common Misconception About ProbabilityDependent vs Independent EventsA couple posts ago I began talking about probabilities. I want to spend some more time on the topic because it’s one of those concepts that can be obviously easy one minute…
Lognormal > NormalTLDR: If you are estimating only positive numbers, you probably want to use lognormal distributions.
Can You Solve This Intro Probability Problem?lesson thirty-sixAn urn contains 10 balls: 4 red and 6 blue. A second urn contains 16 red balls and an unknown number of blue balls. A single ball is drawn from each urn. The probability that both balls are the…
확률변수와 확률분포확률변수란, 확률실험(ϵ)의 표본공간(Ω)에서 정의되는 함수이다. X:Ω →R을 Ω공간에서 정의되는 확률변수라고 부른다. 함수이기 때문에 정의역, 공역, 치역이 존재한다.동전을 2개 던져서 앞면이 나올 확률사건이 있다. 정의역은 표본공간(Ω)으로 (H,H),(H,T),(T,H),(T,T)이다. 공역은 실수전체 집합이고, 치역은 (0,1,2)이다.확률분포함수