Mystery of Dark Matter Uncovered by Hubble and VLT

James Maynard
Sep 12 · 5 min read

Our understanding of dark matter just became even more warped — literally.

One mystery of dark matter is that it makes up the vast majority of all the matter in the Universe, yet we know surprisingly little about it. This mysterious “something” cannot be seen through light or any other form of electromagnetism — hence the name “dark.” However, dark matter does emit gravitational forces, without which galaxies and clusters of galaxies would fly apart.

A new study, based on observations of distant galaxy clusters seen by the Hubble Space Telescope and the Very Large Telescope in Chile reveal dark matter behaves differently than simulations predict, suggesting our models of dark matter may need to be refined.

Image for post
Image for post
Three of the 11 galaxy clusters seen by astronomers, revealing unexpected behavior from dark matter. Image credits: NASA/ESA/HSST/J. Lotz/M. Postman/STScI/L. Infante (Pontificia Universidad Católica de Chile)/CLASH Team/HFF Team

In 1933, astronomer Fritz Zwicky was observing the Coma galaxy cluster when he noticed something unusual — there was not anywhere near enough material to hold the group of galaxies together — yet, they are, somehow, gravitationally bound together. Zwicky suggested the presence of an unseen form of matter, which became known as dark matter.

In the 1970’s, Vera Rubin used the 2.1 meter telescope at Kitt Peak outside Tucson, Arizona, studying the rates at which galaxies rotate. What she found showed dark matter resides within the structures galaxies as well as between them.

Dark matter also makes up the large-scale infrastructure of the Universe — forming massive ribbons of galaxies that arc across the Cosmos.

We now know that the ordinary matter out of which everything familiar is made — stars, planets, cats, and people — makes up just a small fraction of everything out there.

Two Eyes are Better than One

Image for post
Image for post
The massive galaxy cluster MACSJ 1206, seen by Hubble and the VLT. Seen within the cluster are distant background galaxies (seen as smeared arcs). These distortions are caused by the dark matter within the cluster. Image credit: NASA, ESA, G. Caminha (University of Groningen), M. Meneghetti (Observatory of Astrophysics and Space Science of Bologna), P. Natarajan (Yale University), the CLASH team, and M. Kornmesser (ESA/Hubble)

Because astronomers are unable to see dark matter directly, they study ordinary matter around a target, measuring how it is affected by the invisible source of gravity.

One method of measuring dark matter is studying the way light from distant clusters of galaxies bends as it travels past a clump of dark matter. This effect, known as gravitational lensing, can magnify, or even make multiple images from, distant objects.

Astronomers recently examined 11 distant galaxy clusters, using the Hubble Space Telescope and the Very Large Telescope (VLT) in Chile. These groups of galaxies are rich with dark matter both within the galaxies (small-scale clumps) and joining the clusters together (large-scale clumps).

Image for post
Image for post
The Hubble Space Telescope (HST) and the Very Large Telescope in Chile combined images to make this new discovery about dark matter. Image credit: NASA/ESA/VLT/ESO/L. Calcada

Razor-sharp images from Hubble, combined with advanced spectral analysis from the VLT provided astronomers with the tools they needed to probe these distant galactic clusters. These observations revealed dozens of background targets with their light paths bent by dark matter. By studying these targets, researchers were able to map out the amount and placement of pockets of invisible dark matter.

Examination of this data revealed gravitational lensing from small-scale dark matter clumps is 10 times greater than expected.

“To me personally, detecting a gnawing gap — a factor of 10 discrepancy in this case — between an observation and theoretical prediction is very exciting… It’s these kinds of gaps and anomalies that have often revealed that either we were missing something in the current theory, or it points the way to a
brand-new model,” said Priyamvada Natarajan, astrophysist at Yale University.

“In a spiral galaxy, the ratio of dark-to-light matter is about a factor of ten. That’s probably a good number for the ratio of our ignorance to knowledge. We’re out of kindergarten, but only in about third grade.” — Vera Rubin

Researchers also found images of different sizes nestled inside one another like Russian Matryoshka dolls. This new study could show a gap in astronomers’ understanding of dark matter.

“The observed cluster substructures are more efficient lenses than predicted by CDM simulations, by more than [10 times]. We suggest that systematic issues with simulations or incorrect assumptions about the properties of dark matter could explain our results,” researchers describe in an article published in the journal Science.

A look at the new findings about dark matter, from NASA Goddard Space Flight Center.

Spectroscopic analysis from VLT data allowed astronomers to measure velocities of individual stars within the galaxy clusters. This allowed them to determine the amount of mass, including dark matter, in the distant galactic clusters.

“We have done a lot of careful testing in comparing the simulations and data in this study, and our finding of the mismatch persists. One possible origin for this discrepancy is that we may be missing some key physics in the simulations,” said Massimo Meneghetti of the INAF (National Institute for Astrophysics)-Observatory of Astrophysics and Space Science of Bologna in Italy.

By bringing together different types of telescopes, examining targets over a range of frequencies (light, radio, infrared, ultraviolet, etc.), astronomers are better able to piece together processes occuring in and around distant targets. The supernova explosion of a distant star, for instance, will radiate in high frequencies — gamma rays and X-rays, before cooling off, radiating in visible light, infrared, and radio waves. By combining observations over all these frequencies, it is possible to develop a comprehensive record of an event.

The Nancy Grace Roman Space Telescope, scheduled for launch in the mid-2020's, will examine even more distant galaxy clusters, attempting to unravel the mysteries of dark matter.

James Maynard is the founder and publisher of The Cosmic Companion. He is a New England native turned desert rat in Tucson, where he lives with his lovely wife, Nicole, and Max the Cat.

id you like this article? Join us on The Cosmic Companion Network for our podcast, weekly video series, informative newsletter, news briefings on Amazon Alexa and more!

The Cosmic Companion

Exploring the wonders of the Cosmos, one mystery at a time

James Maynard

Written by

Writing about space since I was 10, still not Carl Sagan. Weekly video show, podcast, comics, more: www.thecosmiccompanion.net

The Cosmic Companion

Exploring the wonders of the Cosmos, one mystery at a time

James Maynard

Written by

Writing about space since I was 10, still not Carl Sagan. Weekly video show, podcast, comics, more: www.thecosmiccompanion.net

The Cosmic Companion

Exploring the wonders of the Cosmos, one mystery at a time

Medium is an open platform where 170 million readers come to find insightful and dynamic thinking. Here, expert and undiscovered voices alike dive into the heart of any topic and bring new ideas to the surface. Learn more

Follow the writers, publications, and topics that matter to you, and you’ll see them on your homepage and in your inbox. Explore

If you have a story to tell, knowledge to share, or a perspective to offer — welcome home. It’s easy and free to post your thinking on any topic. Write on Medium

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store