7 Unsolved problems in neuroscience

Listen to this Story or Read it

MListen
Listen To My Story
Published in
4 min readJan 24, 2016

--

There are yet unsolved problems in neuroscience, although some of these problems have evidence supporting a hypothesized solution, and the field is rapidly evolving.

Here are seven of life’s eternal mysteries that brain scientists are figuring out:

1. Whether we have free will

You’re rushing to work in the rain and see a puddle covering the sidewalk in front of you. It looks shallow enough to walk through. But just when you’re about to step on in, you realize the puddle is deceptively deep, so you leap across to stay dry. Spontaneous decision, right?

Maybe, but cognition experts are at odds. Some scientists believe that what seem like real-time choices are actually predetermined by unconscious neural activity that occurs seconds before decisions play out.

But even if some snap decisions are preordained, plenty of philosophers and scientists insist that free will is alive and well. Personal autonomy, critics of neuroprediction say, exceeds what electroencephalograms can measure. No one should really shout “Free will is an illusion!” from the rooftops until they can use brain signal analysis to augur ethical arguments and emotional breakdowns.

Still, a few scientists are intent on disrupting the free will debate, and arguably are making progress. One MIT neuroscientist is searching for a free will neuron. Neuroscientist and philosopher Sam Harris, among the most famous contemporary deniers of free will, argues that morality and political freedom can exist even if free will doesn’t.

2. Why we dream

It’s one of our most basic functions, and yet we still don’t quite know why our unconscious mind races after we hit the sack.

Despite what Freud thinks, brain experts dispute that dreams are a gateway into the subconscious, or mean much of anything at all. One, Harvard psychiatrist Allan Hobson, thinks our dreams are a byproduct of attempts by one brain region to make sense of biochemical changes and neural impulses originating in another region.

According to another theory, dreaming is the way we purge extra, useless thoughts collected throughout the day. We make so many unnecessary connections and observations that they gunk up our brains. At night, some argue, we need to clear the decks so we’re only holding on to what’s important.

A few theories also posit that, in one way or another, we dream for the sake of preserving memories. Some psychiatrists see dreams as a place to store short-term memories before we convert them into long-term memories. Other research suggests that dreaming primarily strengthens the initial memory encoding process.

3. Whether time is real

We measure time with clocks based on planetary revolutions, but according to many experts, the way our brains perceive time shapes our sense of reality more than conventional measures of time.

Absorbing sensory information sparks a chain reaction among neural networks that leaves something like a time stamp on the brain to help us understand the world, according to research.

4. The line of consciousness

Does comatose equal unconscious? How many and what kind of neurons need to fire to produce all those thoughts running through our minds? What constitutes awareness? Scientists, doctors and even philosophers are still trying to figure it out.

For many years, people in persistent vegetative states were thought to lack the capacity for conscious thought. But researchers have discovered that some entirely unresponsive coma patients still have “robust” neural activity.

5. How our thoughts come about

We can implant electrodes in the brain to measure the activity of a single neuron. But we still don’t completely understand how neuronal activity, especially on such a small scale, affects thinking and behavior.

6. The possibility of inception

We’re pretty susceptible to forming false memories. The neural basis of reinventing the past remains murky, but scientists have been working on the Inception-like feat of implanting false memories into the brain.

MIT scientists have successfully implanted false memories into mice brains, and found that the neurological traces of false memories, called engrams, are the same as real memories.

A cognitive neuroscientist at Northwestern University, Ken Paller, is working on a project to implant false memories into the human brain during sleep, which his lab partially funded through experiment.com.

In a 2013 study, scientists found that people with highly superior autobiographical memory, the closest thing to photographic memory that really exists, are just as prone to memory distortions as anyone else.

7. Whether we can ever make a computer as strong as the human brain

The general concept of a brain as a computer comes from MIT philosopher Hilary Putnam, who pioneered the computational theory of mind in 1961. Many (perhaps most) neuroscientists will quickly bat down the idea that a computer can ever successfully replicate the human mind in all of its intricacies. But there are some vocal holdouts.

Futurist Ray Kurzweil wrote How to Create a Mind and now works at Google, where he’s leading efforts to build software that understands text as well as the human mind can. The software would be less like Siri, who can produce a list of links, and more like something out of Her — a virtual assistant capable of connecting new and old information, and synthesizing original ideas without prompting.

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Get Your Podcast- Turn your medium.com stories into professional podcasts. It’s Free.

--

--

MListen
Listen To My Story

Turn your medium.com stories into professional podcasts. Fast delivery. Top quality. It’s Free.